Ulva lactuca Fucoidan Extract and its Protective Effects on $CCI_4$-induced Liver Dysfunction

$CCI_4$로 유도된 간 기능장애에 대한 갈파래 푸코이단 추출물의 보호효과

  • Nam, Chun-Suk (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Kang, Kum-Suk (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Ha, Bae-Jin (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University)
  • 남천석 (신라대학교 의생명과학대학 제약공학과) ;
  • 강금석 (신라대학교 의생명과학대학 제약공학과) ;
  • 하배진 (신라대학교 의생명과학대학 제약공학과)
  • Published : 2007.04.30

Abstract

The effects of Fucoidan extracted from Ulva lactuca on carbon tetrachloride ($CCI_4$)-induced dysfunction in $CCI_4$-posttreated rats were investigated. Ulva lactuca fucoidan (ULF) of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1 ml/kg for 14 days. On the day 15, 3.3 ml/kg of $CCI_4$ dissolved in olive oil (1 : 1) was injected 12 hours before anesthetization. We examined the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) in serum of rats, superoxide dismutase (SOD) in mitochondrial fraction and catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA) in liver of rats. SOD, CAT, GPx decreased, and GOT, GPT, MDA increased in the $CCI_4$-treated group. But SOD, CAT, GPx increased, and GOP, GPT, MDA decreased in the ULF and $CCI_4$-treated group. These results showed that ULF had the protective effects on the liver dysfunction of $CCI_4$-treated rats.

갈파래는 해양성 조류 중 녹조류의 일종으로 해양성 조류의 생리활성물질로 알려진 다당체인 푸코이단을 함유하고 있다. 갈파래로부터 추출된 푸코이단의 간 독성 보호효과를 검토하기 위해서 흰쥐를 사용하여 갈파래 푸코이단 추출물 (ULF)을 14일간 매일 1회 복강 내로 선 투여하고 15일째 되는 날에 $CCI_4$를 후투여한 후에 혈액 및 간 조직에서의 지질의 평가와 효소 활성의 변동을 통해 간 독성의 보호효과를 관찰하였다. GOT의 경우 정상군에 비해 대조군에서 $CCI_4$의 간 장애 유발로 인해 효소 활성이 약 3.3 배 증가하였고 시료군인 ULF군은 대조군과 비교 하였을 때 29.8% 감소하여 갈파래 푸코이단 추출물의 효과를 확인할 수 있었다. 또한 GPT의 경우에도 $CCI_4$를 투여한 대조군이 정상군에 비해 약 3.7배 정도 증가하여 간 장애 유발이 확인되었고 ULF은 대조군에 비해 48.15% 감소하는 것으로 나타나 갈파래 푸코이단 추출물의 효소 활성 감소효과를 확인할 수 있었다. $CCI_4$로 간 손상이 초래된 대조군은 MDA 양이 정상군보다 약 2.97배 증가하는 경향을 나타내었고 ULF군은 대조군에 비해 37.64%의 감소율을 보여 갈파래 푸코이단 추출물의 지질과산화 감소효과를 화인할 수 있었다. SOD 활성 정도는 대조군의 효소활성이 정상군에 비해서 1.38배 정도로 낮게 나타났고 ULF군은 대조군에 비해 343% 이상의 효과를 나타내었다. 또한 CAT는 대조군이 정상군에 비해 약 1.7배 감소하였으며 ULF군은 대조군 보다 30.2% 높게 나타났다. GPx의 경우 대조군은 정상군에 비해 약 3.5배의 감소율을 보였고 ULF군은 대조군에 비해서 34.43%의 증가율을 보여 효과가 매우 높음을 알 수 있었다. 이러한 측정 결과는 갈파래 추출 푸코이단이 간 독성을 예방하는 보호효과가 있음을 보여 주었다.

Keywords

References

  1. Cho, M. H. (2004), The base of toxicology, Young Chi (ed.), 116-110
  2. Ashburm, L. L., Endicott, K. M., Daft, F. S., and R. D. Little (1947), The nonportal distribution of trabecule in dietary cirvhosis of mouse and huinea pigs, Am. J. Path. 23, 159
  3. Butler, T. C. (1990), Reduction of carbon tetrachloride in vivo and reduction of carbon tetrachloride and chloroform in vitro by tissues and tissues constituents, J. Pharmacol. Exp. Ther. 134, 311-319
  4. McCay, P. B., Lai, E. K., Poyer, J. L., Dubose, C. M., and E. G. Janzen (1984), Oxygen and carbon-centered free radical formation during carbon tetrachloride metabolism, J. BioI, Chem. 259, 2185-2143
  5. C. S. Jeong, K. W. Jung, and J. S. Jeong (1999), Hepatoprotective Effect of Subfractions of Carthamus tinctorius L. Semen on the Reversal of Biotransformation Enzyme Activities in $CCl_4$-induced Hepatotoxic Rats, J. Fd Hyg Safety 14(2), 172-178
  6. Lee, J. H. end Y. J. Sun (1980), The content of minerals in algae, J. Korea Soc. Food Sci. Nutr. 9, 51-58
  7. Cho, K. J. , Lee, Y. S., and B. lL. Ryn (1990), Antitumor effect and immunology activity of seaweeds toward sarcoma-180, J. Korea Fish. Soc. 23, 315-352
  8. Schaeffer, D. J. and V. S. Krylov (2000), Ami-HIV activity of Extracts and compounds from algae and Cyanobacteria, Ecotoxicol. Environ. Safety 45, 208-227 https://doi.org/10.1006/eesa.1999.1862
  9. Nagumo, T. and T. Nishino (1997), Fucan Sulfates and their anticogulant activities. In S. Dumitriu.(ed.), PoIysaccharides in Medicinal Applications. New York-Basel-Hong Kong, 545-574
  10. In Hyu Lee, Yong-Pil Lee, and Young Sheen Ahn (1986), Flora of Marine Algae in Cheju Island 1. Ulvaceae, The Korean Journal of PhycoIogy 1(1), 157-167
  11. Tako, M., M. Uehara, Y. Kawashima, I. Chinen, and F. Hongo (1996), Isolation and identification of fucoidan from Okinawamozuku, Oyu Toshitsu Kagaku, J. Appl. Glycosci. 43, 143-148
  12. Lowry, O. H., Rosenbrough. N. J., Farr, A. S., and R. J. Randall (1951), Protein Measurenment with Folin phenol reagent, J. Biol. Chem. 193. 256-261
  13. Ohkawa, A., Ohishi, N., and K. Yagi (1979), Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  14. Beauchamp, C. and I. Fridovich (1971). Superoxide dismutase. improved assays and an assay applicable to acrylamide gel, Anal Biochem. 44, 276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  15. Aebi, H. (1984), Catalase in vitro, Methods, Enzymology 105, 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  16. Lawrence, R. A. and R. F. Burk (1976), Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71, 952-958 https://doi.org/10.1016/0006-291X(76)90747-6
  17. Gabriel L. Plaa and William R. Hewitt (1982), Hayes: Principles and Methods of Toxicology, Raben Press, 407-445
  18. Mcphalen, C. A., Vincent, M. G., and J. N. Jansonius (1992), X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase, J. Mol. Biol. 225, 495-517 https://doi.org/10.1016/0022-2836(92)90935-D
  19. Takaharu Nomura and Kiyonori Yamaoka (1999), Low-dose ${\gamma}-ray$ irradiation reduces oxidative damage induced by $CCl_4$ in mouse liver, Free Radical Biology & Medicine 27(11/12), 1324-1333 https://doi.org/10.1016/S0891-5849(99)00180-X
  20. Fred, J., Yost, J., and I. Fridovich (1976), Superoxide and hydrogen peroxide in oxygen damage, Arch. Biochem. Biophys. 175, 514-518 https://doi.org/10.1016/0003-9861(76)90539-7
  21. H. R. Ling, H. Siren, M. L. Riekkola, P. Vuorela, H. Vuorela, and R. Hiltunen (1996), Optimized separation of pharmacologically active flavonoids from Epimedium species by capillary electrophoresis, Journal of Chromatography A 746, 123-129 https://doi.org/10.1016/0021-9673(96)00287-7
  22. Rosen, D. R., et al. (1993), Mutations with familial amyotrophic lateral sclerosis, Nature 362, 59-62 https://doi.org/10.1038/362059a0
  23. Tainer, J. A., Getzoff, E. D., Richardson, J. S., and D. C. Richardson (1983), Structure and mechanism of Cu, Zn, superoxide dismutase, Nature 306, 274-287 https://doi.org/10.1038/306274a0
  24. Gutteridge, J. M. C., Beard, A. P. C., and G. J. Quinlan (1983), Superoxide-dependent lipid peroxdation. Problem wih the use of catalase as a specific probe for Fenton-derived hydroxyl radicals, Biochem. Biophys. Res. Commun. 117, 901-907 https://doi.org/10.1016/0006-291X(83)91681-9
  25. Yosjikawa, T., Murakami, M., Yoshida, N., Seto, O., and M. Kondo (1983), Effects of superoxide dimutase and catalase on disseminated intravascular coagulation in rats, Thromb. Haemostas 50, 869-872
  26. Fridovich, I. (1986), Biologic effects of the superoxide radicals, Arch. Biochem. Biophysm. 247, 1-15 https://doi.org/10.1016/0003-9861(86)90526-6
  27. Von, Sonntag (1987), The Chemical Basis of Radiation of biology, Tylor and Francis.(ed.), London. 31