• Title/Summary/Keyword: Glutathione S transferase

Search Result 853, Processing Time 0.028 seconds

Red Seaweed (Hypnea Bryodies and Melanothamnus Somalensis) Extracts Counteracting Azoxymethane-Induced Hepatotoxicity in Rats

  • Waly, Mostafa Ibrahim;Al Alawi, Ahmed Ali;Al Marhoobi, Insaaf Mohammad;Rahman, Mohammad Shafiur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5071-5074
    • /
    • 2016
  • Background: Azoxymethane (AOM) is a well-known colon cancer-inducing agent in experimental animals via mechanisms that include oxidative stress in rat colon and liver tissue. Few studies have investigated AOM-induced oxidative stress in rat liver tissue. Red seaweeds of the genera Hypnea Bryodies and Melanothamnus Somalensis are rich in polyphenolic compounds that may suppress cancer through antioxidant properties, yet limited research has been carried out to investigate their anti-carcinogenic and antioxidant influence against AOM-induced oxidative stress in rat liver. Objective: This study aims to determine protective effects of red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts against AOM-induced hepatotoxicity and oxidative stress. Materials and Methods: Sprague-Dawley rats received intraperitoneal injections of AOM, 15 mg/kg body weight, once a week for two consecutive weeks and then orally administered red seaweed (100 mg/kg body-weight) extracts for sixteen weeks. At the end of the experiment all animals were overnight fasted then sacrificed and blood and liver tissues were collected. Results: AOM treatment significantly decreased serum liver markers and induced hepatic oxidative stress as evidenced by increased liver tissue homogenate levels of nitric oxide and malondialdehyde, decreased total antioxidant capacity and glutathione, and inhibition of antioxidant enzymes (catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase and superoxide dismutase). Both red seaweed extracts abolished the AOM-associated oxidative stress and protected against liver injury as evidenced by increased serum levels of liver function markers. In addition, histological findings confirmed protective effects of the two red seaweed extracts against AOM-induced liver injury. Conclusion: Our findings indicate that red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts counteracted oxidative stress-induced hepatotoxicity in a rat model of colon cancer.

Changes of Antioxidant Enzyme Activity in Bagrid Catfish, Pseudobagrus fulvidraco Exposed to Diethylhexyl Phthalate (Diethylhexyl Phthalate에 노출된 동자개, Pseudobagrus fulvidraco의 항산화 효소활성의 변동)

  • KEUM Yoo-Hwa;JEE Jung-Hoon;KOO Ja-Geun;KANG Ju-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.304-308
    • /
    • 2005
  • The effects of diethylhexyl phthalate (DEHP) on various oxidative stress responses in liver, kidney and gill tissues of freshwater bagrid catfish Pseudobagrus fulvidraco were investigated under laboratory conditions. Bagrid catfish were intraperitoneally injected with sunflower seed oil containing nominal concentrations of 0, 300 or 900mg DEHP per kilogram of body weight for 3 days and the effects after last injection were assessed in liver, kidney and gill tissues of the exposed organisms. The oxidative stress responses of fish were evaluated by analyzing the level of glutathione (GSH), as well as the activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR). After exposure to the DEHP, there were significant decrease in GR, GPx activity and GSH content in liver of fish exposed to 900 mg DEHP per kilogram of body weight compared to the control group. Compared with the control group, significant decreases in renal GPx and GR activity were observed in the DEHP treatment groups (900 mg $kg^{-1}$ bw). However, no significant difference was observed in any oxidative stress responses in gills between the DEHP-treated and the untreated group of fish. The findings of the present investigation show that DEHP induce oxidative stress and the liver was the most affected organ followed by the kidney and gills. Furthermore, the changes of GPx and GR activities may be important indicators of oxidative stress responses but additional study is required to confirm the oxidative stress of DEHP.

Combined Effects of Copper and Temperature on Antioxidant Enzymes in the Black Rockfish Sebastes schlegeli

  • Min, Eun Young;Baeck, Su Kyong;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.345-353
    • /
    • 2014
  • Copper has been widely used to control algae and pathogens in fish culture ponds. However, its toxic effects on fish depend not only on its concentration in the water but also on the water quality. A laboratory experiment was conducted to assess copper toxicity in the black rockfish Sebastes schlegeli using a panel of antioxidant enzymes, including glutathione (GSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD), at different levels of copper at three water temperatures (WT, 18, 23, $28^{\circ}C$) for 4 days. After exposure to two copper concentrations (100 and $200{\mu}g/L$), GSH levels and GST activities increased significantly, depending on WT (P < 0.05) in the liver, gill, and kidney of the black rockfish. GPx and SOD activities decreased significantly with both increasing WT and copper treatment in the organs of black rockfish (P < 0.05). These changes can be seen as initial responses to temperature stress and as a sustained response to copper exposure. This also indicates that GSH and related enzymes activities were sensitive indexes to stress by toxicants such as copper. The present findings suggest that simultaneous stress due to temperature change and copper exposure can accelerate changes in enzymes activities in the black rockfish. This provides another example of synergism between environmental temperature and pollutants, which may have important implications for the survival of fish in polluted environments during seasonal warming and/or global climate change.

Effects of the Mori folium Extract in Streptozotocin-Induced Diabetic Rats (고혈당 흰쥐에서 상엽(桑葉)의 혈당 조절과 항산화 작용에 관한 연구)

  • Kim, Oh-Gon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.811-821
    • /
    • 2006
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many methods have been tried to regulate oxygen free radicals for treating diabetes and its complications. Because Mori foliumhas been known to be effective for the treatment of diabetes, the methanol extract of Mori folium was tested for its effectiveness in reducing the oxidative stress induced by streptozotocin. Methods : The crushed Mori folium was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ or 24 h. The extract was filtered and evaporated under reduced pressure using a rotary evaporator to yield 11.7 g. Mori folium extract was oral-administered to diabetic rats induced by streptozotocin at 100 mg per 1 kg of body weight for 20 days. The efficacy of the Mori foliumextract was examined with regard to the enzymatic pathways involved in oxygen free radical production and glutathione balance. Results : The effects of the Mori foliumin streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin level, hepatic lipid peroxide level, hepatic glutathione level, hepatic glutathione S-transferase and glutathione peroxidase level, hepatic aldose reductase activity, and hepatic sorbitol dehydrogenase activity were shown to be good enough to cure and prevent diabetes and its complications. Conclusions : These results indicated that Mori folium might reduce oxidative stress in tissues and organs by regulating the production of oxygen free radicals. Especially Mori folium might prevent and cure diabetes and its complications by reducing oxidative stress in the ${\beta}-cells$ of the pancreas.

  • PDF

Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

  • Vanitha, Manickam Kalappan;Priya, Kalpana Deepa;Baskaran, Kuppusamy;Periyasamy, Kuppusamy;Saravanan, Dhravidamani;Venkateswari, Ramachandran;Mani, Balasundaram Revathi;Ilakkia, Aruldass;Selvaraj, Sundaramoorthy;Menaka, Rajendran;Geetha, Mahendran;Rashanthy, Nadarajah;Anandakumar, Pandi;Sakthisekaran, Dhanapal
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. Results: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.

Effects of Dietary Sea Tangle on Blood Glucose, Lipid and Glutathione Enzymes in Streptozotocin-Induced Diabetic Rats (다시마 분말이 당뇨 유발쥐의 혈당과 지질농도 및 항산화 효소계에 미치는 영향)

  • Cho, Young-Ja;Bang, Mi-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.4
    • /
    • pp.419-428
    • /
    • 2004
  • The Purpose of this study was to investigate the effect of dietary sea tangle in diabetic rats treated with streptozotocin(STZ). Four groups of rats (Sprague-Dawley male rats,180-200g) were normal rats fed control diet(C), diabetic rats fed control diet(CD), normal rats fed sea tangl diet(T), and diabetic ,rats fed sea tangle diet(TD), diabetes was induced by single injection of streptozotocin(60mg/kg B.W.). High density lipoprotein(HDL) of T and TD group were higher than other groups(C and T groups). And the weekly change of blood sugar was decreased in the 3th and 4th weeks. But serum triglyceride (TG) of diabetic rats fed sea tangle diet(TD) was lower than diabetic rats fed control dlet(CD). Activity of hepatic microsomal Glucose 6-phosphatase(G6Pase) was significantly increased CD and TD groups higher than C and T groups. Hepateic glutathione S-transferase(GST of T, CD and TD groups were significantly lower than C group(p<0.05), glutathione peroxidase (GPX) of T and TD groups were significantly higher than C and CD groups(p<0.05).

Hepatic Detoxification and Antioxidant Activity in Sea-urchin Roe and Ethanol Extract of Roe (성게 부위별 및 그 추출물의 간 해독과 항산화 활성 효과)

  • Lee, Seung-Joo;Ha, Wang-Hyun;Choi, Hye-Jin;Cho, Soon-Yeong;Choi, Jong-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.428-436
    • /
    • 2010
  • Sea-urchins (Anthocidaris crassispina) are widely distributed in the East Sea of Korea. The aim of this study was to evaluate the hepatoprotective effects of sea-urchin roe on bromobenzene (BB)-induced liver damage in rats. The antioxidative and detoxifying properties of sea-urchin roe in BB-poisoned rat liver was examined by chemical analysis of serum aminotransferase (AST, ALT), glutathione S-transferase (GST), $\gamma$-glutamylcystein synthetase, glutathione reductase, epoxide hydrolase, amino-N-demethylase (AD), aniline hydrolase (AH) enzyme activity, as well as lipid peroxide and glutathione contents. Sea-urchin roe inhibited the increase of serum AST, ALT enzyme activity. Increasing lipid peroxide contents and AD and AH activities were significantly decreased in ethanol extract of sea-urchin roe. GST, $\gamma$-glutamylcystein synthetase, glutathione reductase and epoxide hydrolase enzyme activities increased in sea-urchin roe-fed group, compared with the BB-treated group. These results suggest that sea-urchin roe facilitates recovery from liver damage by enhancing antioxidative defense mechanisms and hepatic detoxication metabolism.

Protective Effects of Acetylbergenin against Carbon Tetrachloride Induced Hepatotoxicity in Rats

  • Lim, Hwa-Kyung;Kim, Hack-Seung;Kim, Seung-Hwan;Chang, Myung-Jei;Rhee, Gyu-Seek;Choi, Jong-Won
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.114-118
    • /
    • 2001
  • The present study was undertaken to investigate whether or not the hepatoprotective activity of acetylbergenin was superior to bergenin in carbon tetrachloride ($CCl_4$)-intoxicated rat. Acetylbergenin was synthesized by acetylating bergenin, which was isolated from Mallotus japonicus. The hepatoprotective effects of acetylbergenin were examined against $CCl_4$-induced liver damage in rats by means of serum and liver biochemical Indices. Acetylbergenin was administered orally once daily for 7 successive days, then a 0.5 ${m/kg}$ mixture of $CCl_4$in olive oil (1:1) was intraperitoneally injected at 12 h and 36 h after the final administration of acetylbergenin. Pretreatment with acetylbergenin reduced the elevated serum enzymatic activities of alanine/aspartate aminotransferase, sorbitol dehydrogenase and $\gamma$-glutamyltransferase in a dose dependent fashion. Acetylbergenin also prevented the elevation of hepatic malondialdehyde formation and depletion of glutathione content dose dependently in $CCl_4$-intoxicates rats. In addition, the decreased activities of glutathione S-transferase and glutathione reductase were restored to almost normal levels. The results of this study strongly suggest that acetylbergenin n has potent hepatoprotective activity against $CCl_4$-induced hepatic damage in rats by glutathione-mediated detoxification as well as having free radical scavenging activity. In addition, acetylbergenin doses of 50 ${mg/kg}$showed almost the same levels of hepatoprotection activity as 100 ${mg/kg}$ of bergenin, indicating that lipophilic acetylbergenin is more active against the antihepatotoxic effects of $CCl_4$ than those of the much less lipophilic bergenin.

  • PDF

Effects of Boganhwan Decoction on the Liver Lipid Peroxide Content and Metabolic Enzyme System (노화과정(老化過程)의 흰쥐에서 보간환(補肝丸)이 간장(肝臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響))

  • Cho, Han-sook;Oh, Min-suk;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.711-726
    • /
    • 1999
  • Aging in the life form occurs due to a gradual progression of the body growth and degeneration. Morphological and functional changes in the body decreases the adaptation and prevention capacity leading into the decline of a life force. Various studies have been released to examine the anti-aging effects of herbal prescriptions. This experiment has chosen Boganhwan which is used for the deficiency of the liver function and studied the anti-aging factors by examining the biotransformation enzymes. The following results were obtained in this study: 1. Hepatic lipid peroxide activity was significantly suppressed in the experimental group treated with Boganhwan for 2 weeks at the dosage of 350mg/kg, while other dosage groups did not present much changes. 2. Insignificant changes were shown for the cytochrome P-450 level, aminopyrine demethylase, and aniline hydroxylase (AH) activities. Cytochrome P-450 do not appears to be a part of the detoxification scheme. 3. Boganhwan decoction treated group showed most significant increase of superoxide dismutase (SOD), catalase, superoxide, and glutathione activities at the concentration of 350mg/kg and 500mg/kg. 4. Glutathione S-transferase and glutathione made most significant increase at the decoction concentration of 350mg/kg and 500mg/kg compared to the control group. 5. Hepatic glutathione concentration, protein bound-SH, and nonprotein bound-SH made most significant increase at the decoction concentration of 350mg/kg and 500mg/kg compared to the control group. From the above results, Boganhwan decoction played an important role in eliminating foreign substances in the body excluding cytochrome P-450 enzyme system. Thus, Boganhwan decoction can provide substantial aid in preventing and treating senile related illnesses.

  • PDF

A Study on the Effects of Sungshimsan on the Heart Lipid Peroxide and Metabolic Enzyme System in Senescence Induced Rats (노화과정(老化過程)의 흰쥐에서 성심산(醒心散)이 심장(心臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響))

  • Kwak, Jung-mun;Oh, Min-Suck;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.625-641
    • /
    • 1999
  • Aging occurs as a part of maturation as the time progresses which manifests in the human body causing morphological and functional degeneration, eventually leading to death. This experimental study was conducted to investigate a herbal formula to fortify the heart with easy clinical applications. Sungshimsan was chosen to study its effects in heart lipid peroxide and metabolic enzyme system in senescence induced rats. After pre-treatment of Sungshimsan for 2 weeks at the dosage of A (100mg/kg), B (250mg/kg), C (350mg/kg), and D (500mg/kg), a lipid peroxide and metabolic enzyme system changes of the heart were meaured in 32 weeks old rats. The following results were obtained in this study: 1. The contents of lipid peroxide was significantly reduced in the experimental groups treated with greater than 2 weeks at 250mg/kg. 2. The enzymatic activity of cytochrome P-450, cytochrome b5, and NADPH-cytochrome P450 reductase were significantly decreased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 3. The activity of glutathione and glutathione S-transferase were significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 4. The activity of glutathione reductase and glutathione peroxidase were not influenced compared to the control group. 5. The activity of ${\gamma}$-glutamylcystein synthetase was significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 6. The activity of enzymes detoxificatioon superoxide dismutase and catalase were not influenced compared to the control group. Summarizing above results suggest that the Sungshimsan has profound effects in the heart lipid peroxide, free radicals, and delaying the heart aging process. Further clinical researches and application can be anticipated on the topic of senility and gerontology.

  • PDF