• Title/Summary/Keyword: Glucosidase

Search Result 1,225, Processing Time 0.029 seconds

Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens (Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석)

  • Hwang, Chang-Sun;Lee, Jin-Young;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.341-346
    • /
    • 2012
  • Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.

Isoflavone Distribution and ${\beta}$-Glucosidase Activity in Cheonggukjang, a Traditional Korean Whole Soybean-Fermented Food

  • Yang, Seung-Ok;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.96-101
    • /
    • 2006
  • Isoflavone distribution and ${\beta}$-glucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food prepared with or without addition of Bacillus subtilis, were analyzed every 6 hr for 36 hr. Thermal cooking of raw-soaked soybeans significantly increased ${\beta}$-glucoside isoflavone level by 57.1 % and decreased malonyl-${\beta}$-glucosides by 57.6% (p<0.05). Consistent changes of isoflavone profiles in cheonggukjang without B. subtilis addition (COB) and samples with addition of B. subtilis (CWB) were not observed during 36 hr fermentation. ${\beta}$-Glucosides of isoflavones are major forms in both COB and CWB. ${\beta}$-Glucosidase activity in cheonggukjang decreased significantly compared to that of soaked soybeans due to thermal denaturation, while recovery of enzyme activity in COB was observed. Two new unidentified peaks were detected, and their relative peak areas in CWB were significantly larger than those in COB with increasing fermentation period (p<0.05), which indicates both peaks could be associated with fermentation metabolites.

A Specific Short Dextrin-Hydrolyzing Extracellular Glucosidase from the Thermophilic Fungus Themoascus aurantiacus 179-5

  • Carvalho Ana Flavia Azevedo;Goncalves Aline Zorzetto;Silva Roberto da;Gomes Eleni
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.276-283
    • /
    • 2006
  • The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (${\alpha}$-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II ${\alpha}$-glucosidase. The optimum temperature of the enzyme was $70^{\circ}C$. In addition, the enzyme was highly thermostable (100% stability for 10 h at $60^{\circ}C$ and a half-life of 15 min at $80^{\circ}C$), and stable within a wide pH range.

$^{1}$H-NMR spectroscopic evidence on the glycosidic linkages of the transglycosylated products of low-molecular-weight $\beta$-D-glucosidase from trichoderma koningii (Trichoderma koningii에서 분비되는 .$\beta$-D-glucosidase의 반응산물에 대한 핵자기공명분석)

  • 이헌주;정춘수;강사욱;하영칠
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • The mode of transglycosylation reaction observed during the action of low-molecular-weigh $\beta$-D-glucosidase ($\beta$-D-glucoside glucohydrolase, EC3.2.1.21) purified from Trichoderma koningii ATCC 26113 was investigated using $^{1}H$-NMR spectroscopy. The enzyme was purified by the series of procedures including ammonium sulfate precipitation, and fractionations by column chromatographies on Bio-Gel P-150, DEAE-Sephadex A-50, and SP-Sephadex C-50. The final purification was performed by the band eluation after preparative polyacrylamide gel electrophoresis. The enzyme showed its molecular size of 78,000 through the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its isoelectric point of 5.80 through the analysis of analytical isoelectric focusing. The H-1 proton resonances were analyzed. After the reaction of the enzyme with cellobiose, the reaction products were separated by high performance liquid chromatography using refractive index detector. H-1 resonances of the products were consisted with those of gentiobiose [$\beta$-D-glucopyranosyl--(1,6)-D-glucopyranose], and cellotriose [$\beta$-D glucopyranosyl-(1,4)-$\beta$-D-glucopyranosyl]-(1,4)-D-glucopyranose] with minor resonances of sophorose [$\beta$-D-glucopyranosyl-(1,2)-D-glucopyranose], respectively.

  • PDF

Purification and Characterization of an α-D-Galactosidase from Grape Berry

  • Kang, Han-Chul;Kim, Tae-Su
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.141-146
    • /
    • 2000
  • Glycosidase activities were tested from the grape berries, Vitis labruscana B. Takasumi. Among various glycosidases, $\alpha$-D-galactosidase was found to be the most active in the flesh and other glycosidases were considerably active in the order of the following: $\alpha$-D-mannosidase>$\alpha$-D-glucosidase>$\beta$-D-glucosidase>$\beta$-D-galactosidase. In the seeds, $\alpha$-D-glucosidase activity was the highest and other glycosidases such as $\alpha$-D-galactosidase, $\beta$-D-glucosidase, and $\beta$-D-galactosidase were still significantly active. The $\alpha$-D-galactosidase in the grape flesh was purified over 83-folds through salting-out with $(NH_4)_2SO_4$ and a series of chromatographies employing Sephadex G-50, Octyl-Sepharose, Q-Sepha- rose, and Biogel P-100. The enzyme was a monomer of 45 kDs as determined through SDS-PAGE and Sephacryl S-200 chromatography. The purified enzyme showed a preference of $\alpha$-D-galactose to $\beta$-D-galactose as a substrate about 5.4 times. Sulfhydryl specific reagents such as N-ethylmaleimide and iodoacetamide significantly inhibited the enzyme activity to the extents of 48 and 52% of its initial activity, respectively. The optimumpH range of $\alpha$-D-galactosidase was around 6.5-7.0. The enzyme activity increased by 46% in the presence of 1mM $Fe^{2+}$.

  • PDF

Antiviral Activity of Methylelaiophylin, an ${\alpha}$-Glucosidase Inhibitor

  • Lee, Do-Seung;Woo, Jin-Kyu;Kim, Dong-Hern;Kim, Min-Young;Cho, So-Mi K.;Kim, Jae-Hoon;Park, Se-Pill;Lee, Hyo-Yeon;Riu, Key Zung;Lee, Dong-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.263-266
    • /
    • 2011
  • Methylelaiophylin isolated from Streptomyces melanosporofaciens was selected as an ${\alpha}$-glucosidase inhibitor with an $IC_{50}$ value of 10 ${\mu}M$. It showed mixed-type inhibition of ${\alpha}$-glucosidase with a $K_i$ value of 5.94 ${\mu}M$. In addition, methylelaiophylin inhibited the intracellular trafficking of hemagglutinin-neuramidase (HN), a glycoprotein of Newcastle disease virus (NDV), in baby hamster kidney (BHK) cells. Methylelaiophylin inhibited the cell surface expression of NDV-HN glycoprotein without significantly affecting HN glycoprotein synthesis in NDV-infected BHK cells.

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF

β-Glucosidase Recovery from a Solid-State Fermentation System by Aspergillus niger (Aspergillus niger 의 고체상태 발효 시스템에서의 β-Glucosidase 회수)

  • Chandra, M. Subhosh;Reddy, B. Rajasekhar;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.999-1004
    • /
    • 2010
  • Investigations were carried out on a $\beta$-glucosidase produced by Aspergillus niger under solid-state fermentation conditions as a model of enzyme recovery from fermented wheat bran. The leaching efficiency of distilled water to recover the enzyme from the fermented bran was higher than acetate buffer, citrate buffer, citrate-phosphate buffer and 5% methanol; thus, the conditions were further optimized with distilled water as the extracting agent. After fermented bran was washed three times with distilled water for 1.5 hr each under shaking conditions at 1:5 solid to solvent ratio, a maximum recovery of 0.025 U/g of wheat bran was obtained.

Physico-Chemical Characteristics of $\alpha$-D-Glucosidase Inhibitor from Streptomyces sp (Streptomyces속 균주가 생성하는 $\alpha$-D-Glucosidase 저해물질의 물리학적 성질)

  • 도재호;주현규
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.35-38
    • /
    • 1990
  • $\alpha$-D-Glucosidase inhibitor purified in a pure form was amorphous powder which gave a single spot at Rf value 0.12-0.71 with various developing solvent systems on silica gel thin layer chromatography, and melting point was 154.3-155.3$^{\circ}C$. It was disolved in water, formic acid and ethylene glycol monoethyl ether, and was very high hygroscopic substance. Biochemical reaction of the substance was positive to phenol sulfuric acid, ninhydrin, silver nitrate-sodium hydroxide, but negative to DNS reagent. Acid hydrolysis gave fructose and acid as sole sugar and amino acid constituents respectively. Moelcular weight of the inhibitor was estimated to be 1,050 by Shphadex G-25 column chromatography.

  • PDF

GBA inhibition suppresses ovarian cancer growth, survival and receptor tyrosine kinase AXL-mediated signaling pathways

  • Gang Wang;Baisha Ouyang;Fang Jing;Xiaoyan Dai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2023
  • The poor outcome of advanced ovarian cancer under conventional therapy necessitates new strategies to improve therapeutic efficacy. β-glucosidase (encoded by GBA) is a lysosomal enzyme and is involved in sphingolipids metabolism. Recent studies revealed that β-glucosidase plays a role in cancer development and chemoresistance. In this work, we systematically evaluated the expression and role of GBA in ovarian cancer. Our work demonstrates that inhibition of β-glucosidase has therapeutic potential for ovarian cancer. Gene Expression Profiling Interactive Analysis database, western blot and immunohistochemistry analyses of patient samples demonstrated that GBA mRNA and protein expression levels were significantly increased in ovarian cancer compared to normal tissues. Functional studies using gainof-function and loss-of-function approaches demonstrated that GBA overexpression did not affect growth and migration but alleviated cisplatin's efficacy in ovarian cancer cells. In addition, GBA depletion resulted in growth inhibition, apoptosis induction, and enhancement of cisplatin's efficacy. Of note, we found that GBA inhibition specifically decreased receptor tyrosine kinase AXL level, leading to the suppression of AXL-mediated signaling pathways. Our data suggest that GBA represents a promising target to inhibit AXL signaling and overcome cisplatin resistance in ovarian cancer.