DOI QR코드

DOI QR Code

Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens

Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석

  • Hwang, Chang-Sun (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Lee, Jin-Young (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Kim, Geun-Joong (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • 황창선 (전남대학교 자연과학대학 생물학과) ;
  • 이진영 (전남대학교 자연과학대학 생물학과) ;
  • 김근중 (전남대학교 자연과학대학 생물학과)
  • Received : 2012.12.05
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.

Keywords

References

  1. Painbeni, E., S. Valles, J. Polaina, and A. Flors (1992) Purification and characterization of a Bacillus polymyxa beta-glucosidase expressed in Escherichia coli. J. Bacteriol. 174: 3087-3091. https://doi.org/10.1128/jb.174.9.3087-3091.1992
  2. Bhatia, Y., S. Mishra, and V. S. Bisaria (2002) Microbial betaglucosidases: cloning, properties, and applications. Crit. Rev. Biotechnol. 22: 375-407. https://doi.org/10.1080/07388550290789568
  3. Pack, S. P., K. Park, and Y. J. Yoo (2002) Enhancement of betaglucosidase stability and cellobiose-usage using surfaceengineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnol. Lett. 24: 1919-1925. https://doi.org/10.1023/A:1020908426815
  4. Moriwaki, N., K. Matsushita, M. Nishina, K. Matsuda, and Y. Kono (2003) High myo-inositol concentration in the hemolymph of planthoppers. Appl. Entomol. Zool. 38: 359-364. https://doi.org/10.1303/aez.2003.359
  5. Kim, J. Y., J. Y. Lee, Y. S. Shin, and G. J. Kim (2009) Mining and identification of a glucosidase family enzyme with high activity toward the plant extract indican. J. Mol. Catal. B-Enzym. 57: 284-291. https://doi.org/10.1016/j.molcatb.2008.10.001
  6. Kim, J. Y., J. Y. Lee, Y. S. Shin, and G. J. Kim (2010) Characterization of an indican-hydrolyzing enzyme from Sinorhizobium meliloti. Process Biochem. 45: 892-896. https://doi.org/10.1016/j.procbio.2010.02.017
  7. Gilbert, K. G., H. G. Maule, B. Rudolph, M. Lewis, and H. Vandenburg, E. Sales, S. Tozzi, and D. T. Cooke (2004) Quantitative analysis of indigo and indigo precursors in leaves of isatis spp. and Polygonum tinctorium. Biotechnol. Prog. 20: 1289-1292. https://doi.org/10.1021/bp0300624
  8. Minami, Y., H. Takao, T. Kanafuji, K. Miura, M. Kondo, I. Hara Nishimura, M. Nishimura, and H. Matsubara (1997) betaglucosidase in the indigo plant: intracellular localization and tissue specific expression in leaves. Plant Cell Physiol. 38: 1069-1074. https://doi.org/10.1093/oxfordjournals.pcp.a029273
  9. Maugard, T., E. Enaud, A. de La Sayette, P. Choisy, and M. D. Legoy (2002) Beta-glucosidase-catalyzed hydrolysis of indican from leaves of Polygonum tinctorium. Biotechnol Prog. 18: 1104-1108. https://doi.org/10.1021/bp025540+
  10. Bechtold, T., A. Turcanu, S. Geissler, and E. Ganglberger (2002) Process balance and product quality in the production of natural indigo from Polygonum tinctorium Ait. Applying low-technology methods. Bioresour Technol. 81: 171-177. https://doi.org/10.1016/S0960-8524(01)00146-8
  11. Komboonchoo, S. and T. Bechtold (2009) Natural dyeing of wool and hair with indigo carmine (CI Natural Blue 2), a renewable resource based blue dye. J. Clean Prod. 17: 1487-1493. https://doi.org/10.1016/j.jclepro.2009.05.007
  12. Meksi, N., M. Kechida, and F. Mhenni (2007) Cotton dyeing by indigo with the borohydride process: effect of some experimental conditions on indigo reduction and dyeing quality. Chem. Eng. J. 131: 187-193. https://doi.org/10.1016/j.cej.2007.01.001
  13. Thangadurai, D., M. B. Viswanathan, and N. Ramesh (2002) Indigoferabietone, a novel abietane diterpenoid from Indigofera longeracemosa with potential antituberculous and antibacterial activity (Retracted Article. See vol 59, pg 336, 2004). Pharmazie 57: 714-715.
  14. Powell, K. A., S. W. Ramer, S. B. del Cardayre, W. P. C. Stemmer, M. B. Tobin, P. F. Longchamp, and G. W. Huisman (2001) Directed evolution and biocatalysis. Angew. Chem. Int. Ed. 40: 3948-3959. https://doi.org/10.1002/1521-3773(20011105)40:21<3948::AID-ANIE3948>3.0.CO;2-N
  15. Taylor, S. V., P. Kast, and D. Hilvert (2001) Investigating and engineering enzymes by genetic selection. Angew. Chem. Int. Ed. 40: 3310-3335. https://doi.org/10.1002/1521-3773(20010917)40:18<3310::AID-ANIE3310>3.0.CO;2-P
  16. Wang, J. X., S. F. Zhang, H. D. Tan, and Z. B. Zhao (2007) PCR-based strategy for construction of multi-site-saturation mutagenic expression library. J. Microbiol. Method. 71: 225-230. https://doi.org/10.1016/j.mimet.2007.09.001
  17. European Bioinformatics Institute, Tools, Sequence analysis, ClustalW2. http://www.ebi.ac.kr.
  18. Bollag, D. M., M. D. Rozycki, and S. J. Edelstein (1996) Protein Methods. 2nd ed., pp. 62-67. John Wiley & Sons, Inc., publication, NY, USA.
  19. Lineweaver, H. and D. Burk (1934) The Determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036