• Title/Summary/Keyword: Glucose Oxidase

Search Result 323, Processing Time 0.024 seconds

Effect of Salviae Multiorrhizae Radix on the Vasculotoxicity induced by glucose oxidase in cultured Pumonary Endotherial cells (Glucose Oxidase에 의해서 손상된 혈관내피세포에 대한 단삼의 영향)

  • Bak Sang Myeon;Lee Joung Hwa;Yang Hyun Woong;Lee Kang Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.136-139
    • /
    • 2003
  • Cytotoxicity of glucose oxidase(GO) and cardioprotective effect of Salviae Multiorrhizae Radix(SMR) against GO-induced cardiotoxicity were measured for evaluation of cardiotoxicity on cultured mouse pulmonary endotherial cells(PEC) by MTT assay after PEC were cultured for 8 hours at various concentrations of GO. GO was toxic in a time and dose-dependent manner on cultured PEC after PEC were grown for 8 hours in media containing 1~60mU/ml GO. While, cultures were pretreated with 60 μg/ml SMR for 2 hours increased remarkably cell viability. From the above results, it is suggested that GO is toxic on cultured PEC by the decrease of cell viability, and herb medicine such as SMR is very effective in the prevention of vascular toxicity induced by GO.

Mathematical Model for the Production of High-purity Fructo-oligosaccharides by the Mixed-enzyme System of Fructosyltransferase and Glucose Oxidase (Fructosyltransferase와 Glucose oxidase 혼합효소계를 이용한 고순도 Fructo-oligosaccharides 생산에서 반응 메카너즘에 대한 수학적 모델)

  • 윤종원;최윤찬이민규송승구
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.40-47
    • /
    • 1994
  • A simplified mathematical model for the production of high-purity fructo-oligosaccharides by the mixed-enzyme system of fructosyl transferees and glucose oxidase was proposed and compared with the experimental results. The kinetic parameters including $K_m,\;V_{max}\;and\;K_{iG}$ were estimated at $40^{\circ}C$, in which $K_m$, values decreased and $K_{iG}$ and $V_{max}$ values increased compared with those of fructosyl transferees alone. The kinetics of the mixed-enzyme system was successfully described in the form of Michaelis-Menten equations. At the reasonable sucrose concentrations tested, the simulated sugar profiles were of good agreement with the experimental ones.

  • PDF

Effect of Benincasae Semen on Glucose Oxidase in Cultured Mouse Spinal Motor Neurons (척수운동신경세포에 있어서 Glucose Oxidase의 독성에 대한 동과의 영향)

  • Choi Yu Sun;Yang Hyun Woong;Lee Joung Hwa;Lee Kang Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.457-460
    • /
    • 2003
  • It has been suggested that oxidative stress of reactive oxygen species(ROS) may play an important role in the pathogenesis of neurological disorder. The aim of this study was to elucidate the oxidative stress of glucose oxidase(GO) in the cultured mouse spinal motor neurons and the preventing effect of Benincasae Semen(BS) on ROS-induced neurotoxicity. Cytotoxic effect of GO and protective effect of BS were performed by MTT assay. 30mU/ml GO decreased cell viability in dose-and time-dependent mannner, and BS diminished GO-induced neurotoxicity in these cultures. From above the results, ROS such as GO has toxic effect, and herb extract of BS is very effective against GO-induced neurotoxicity in cultured spinal motor neurons of neonatal mouse.

광섬유 생물센서에 의한 혈액 중 포도당 및 젖산 모니터링

  • Son, Ok-Jae;Kim, Jin-Hui;Im, Yong-Sik;Seo, Guk-Hwa;Jeong, Sang-Yun;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.627-629
    • /
    • 2003
  • In this work fiber-optic biosensor that has been used in medical applications was developed. And we can monitored the concentration of glucose and lactate in blood sample by using developed fiber-optic glucose and lactate sensor. Glucose oxidase(GOD) and Lactate oxidase(LOD) were immobilized by using acrylamide adhesive and zeolite on the tip of the optic fiber.

  • PDF

Glucose and Its Role in Generating Reactive Oxygen Species Required for Mouse Sperm Fertilizing Ability

  • Lin, S.C.;Chen, M.C.;Huang, A.J.;Salem, B.;Li, K.C.;Chou, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.748-756
    • /
    • 2000
  • Effects of xanthine (X), xanthine oxidase (XO), and catalase (C), $H_2O_2$, and carbohydrates on sperm capacitation, acrosome reaction, and fertilizing ability in vitro were examined. Glucose alone, but not fructose, supported the maximum rate of sperm capacitation and acrosome reaction. However, in the combination of X, XO, and C (XXOC) or $H_2O_2$, fructose alone also supported maximum capacitation, acrosome reaction, and fertilization. Either insufficient or excessive amounts of $H_2O_2$ decreased sperm capacitation and the acrosome reaction. In order to understand how glucose generates $H_2O_2$ or other reactive oxygen species in sperm cells, 6-aminonicotinamide, an inhibitor of the pentose-phosphate pathway (PPP), and apocynin, an inhibitor of NADPH oxidase, were added to sperm suspensions in glucose-containing medium. Results appeared that sperm capacitation, acrosome reaction, and fertilization were consequently inhibited by either one of these compounds. These inhibitory effects were nullified by addition of XXOC. These results support the hypothesis that glucose, in addition to being a substrate for glycolysis, facilitates sperm capacitation and the acrosome reaction by generating reactive oxygen species through G-6-P dehydrogenase and NADPH oxidase.

Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell (글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.693-697
    • /
    • 2016
  • In this study, we fabricated the catalysts for enzymatic biofuel cell anode with carbon nanotube (CNT), glucose oxidase (GOx) and various molecular weights branched poly(ethyleneimine)(bPEI) and terephthalaldehyde (TPA) as cross-linker. In case of GOx/bPEI/CNT using only physical entrapments for immobilization, the molecular weights of bPEI didn't affect to electrochemical performances and long term stability. but that of the catalysts cross linked via TPA (TPA[GOx/bPEI/CNT]) improved and the mass transfer of glucose to FAD was interrupted as increasing of the bPEI's molecular weights. Furthermore, it was confirmed that the optimum molecular weight of PEI for TPA [GOx/bPEI/CNT]) structure is 750k that showed marvelous high performance (maximum power density of $0.995mW{\cdot}cm^{-2}$).

Spectro-electrochemical Analyses of Immobilization of Glucose Oxidase (Glucose Oxidase 고정화에 대한 전기화학적/광학적 분석)

  • Kim, Hyun-Cheol;Cho, Young-Jai;Gu, Hal-Bon;SaGon, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.316-319
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymer's backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent, A formative seeds of film growth is delayed by adding the solvent. The delay is induced by radical transfer between the solvent and pyrrole monomer. In the case of adding ethanol, the radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in ppy. However, adding tetrahydrofuran (THF), the radical transfer is more brisk, resulting in short chained polymer. Therefore, the doping level is lowered and then amount of immobilized of enzyme is decreased. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex (폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조)

  • Nguyen, Linh Thi My;Li, Nan;Yoon, Hyon Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and $46.5{\mu}W/cm^2$ at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.

Studies on the Immobilization of Enzymes and Microoganism Part 1. Immobilizing Method of Glucose Oxidase by Gamma Radiation (효소 및 미생물의 고정화에 관한 연구 제1보. 방사선조사에 의한 Glucose Oxidase의 고정화법)

  • Kim, Sung-Kih
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • A new method for immobilization of glucose oxidate by the aerobic gamma radiation of synthetic monomers was developed. The radiocopolymerization was conducted aerobically at -70 to -8$0^{\circ}C$ with the mixture of several polyfunctional esters, acrylates and native enzyme. The retained activity of immobilized glucose oxidase was about 50 to 55% when a NK 23G ester, acrylamide-bis and water mixture (1:1:2) in cold toluene treated with 450 krad of gam-ma radiation. The radiation dose did not influence significantly to the enzyme activity. The solvents used to prepare the beads of glucose oxidase and monomers were toluene, n-hexane, petoleum ether and chloroform. 0.05M tris-gycerol (pH 7.0) was a more suitable bugger solution for immobilizing the enzyme than was 0.02M phosphate. Immobilization of glucose oxidase shifted the optimum pH for its reaction from 6.0 to 6.5. The pH profile for the immobilized enzyme showed a broad range of optimum activity while the native enzyme gave a sharp pick for its optimum pH value. The immobilized enzyme reaction temperature was at the range of 30~4$0^{\circ}C$.

  • PDF

Glucose Content and pH of Broiler and Porcine Blood Plasma by Glucose Oxidase or Baker's Yeast Addition (Glucose Oxidase 및 제빵용 효모 첨가에 따른 육계와 돼지의 혈장 포도당과 pH 변화)

  • Lee, Jae-Jun;Yi, Young-Hyoun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.416-420
    • /
    • 1999
  • The effects of GOD and yeast on glucose content and pH of broiler and porcine blood plasma were investigated. The initial glucose concentration of broiler and porcine blood plasma were $150mg/100cm^{3}\;and\;143mg/100cm^{3}$, respectively. Addition of GOD and yeast decreased glucose contents in broiler and porcine plasma. As expected, plasma glucose content decreased as incubation time increased. While 1080 and 1110 min were required to remove glucose from both broiler and porcine plasma at GOD 5 units/g and 480 and 1020 min were required at GOD 10 units/g, respectively; both required 240 min at 0.3% yeast (w/w). The Maillard reaction can be prevented by desugarization. During the removal of glucose, pH of the plasma decreased. As glucose content in plasma leveled off, the pH value of plasma increased. Therefore, pH may be used as an index of desugarization.

  • PDF