• Title/Summary/Keyword: Glucopyranoside

Search Result 476, Processing Time 0.022 seconds

Single-Chain Fv Fragment of Catalytic Antibody 4f4f with Glycosidase Activity: Design, Expression, and Purification

  • Jang, Chang-Hwan;Chung, Hyun-Ho;Yu, Jae-Hoon;Chang, Yung-Jin;Kim, Hyong-Bai;Paek, Se-Hwan;Shin, Dong-Hoon;Kim, Kyung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.376-380
    • /
    • 1999
  • Constructs, encoding a single-chain variable fragment of a catalytic antibody 4f4f (scFv-4f4f) with glycosidase activity, were made by combining the coding sequences for the heavy and light chain variable domains with a sequence encoding a linker (GGGGS). Using three different plasmid systems, single-chain antibodies were expressed separately in Escherichia coli, demonstrating significant differences in the expression level and amounts in soluble form of the recombinant protein. The protein expression from pET3a-scFv-4f4f was up to 20% of the total soluble proteins and, more importantly, the proteins were mostly found in a soluble form. An SDS-PAGE analysis of the purified single-chain proteins, yielding higher than 5mg from a 1-1 culture, showed a single band corresponding to its molecular weight of 29,100. A preliminary study shows that the expressed scFv-4f4f is catalytically active. The catalytic parameters for the hydrolysis of p-nitrophenyl-$\beta$-D-glucopyranoside by scFv-4f4f are being investigated.

  • PDF

Effects of genistin from Vigna angularis on Lifespan-extending in Caenorhabditis elegans (팥에서 분리한 Genistin이 선충의 수명연장에 미치는 영향)

  • Lee, Eun Byeol;Ahn, Dalrae;Kim, Ban Ji;Lee, So Yeon;Cha, Youn-Soo;Kim, Mina;Song, Seuk Bo;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.1
    • /
    • pp.17-22
    • /
    • 2015
  • Previous phytochemical studies of Vigna angularis (Ohwi) Ohwi & Ohashi (Leguminosae) have shown the presence of saponins and flavonoids. From the seed of V. angularis, genistein-7-O-${\beta}$-D-glucopyranoside (genistin) was isolated. Lifespan-extending effect of genistin was elucidated using Caenorhabditis elegans model system. Genistin showed potent lifespan extension of worms under normal culture condition. This compound also exhibited the protective effects against thermal and oxidative stress conditions. In the case of heat stress, genistin-treated worms exhibited enhanced survival rate, compared to control worms. In addition, genistin-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of genistin-mediated increased lifespan and stress resistance of worms, we investigated whether genistin might alter superoxide dismutase (SOD), catalase activities and intracellular ROS levels. Our results showed that genistin was able to elevate SOD and catalase activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.

Nitric Oxide Inhibitory Constituents from Fruits of Opuntia humifusa

  • Kang, You-Jeng;Kim, Hae-Young;Lee, Chul;Park, So-Young
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • Opuntia humifusa, also called as Cheonnyuncho, is a cactus widely cultivated in southern regions of Korea. It has been known to have diverse biological activities, but most of the studies were performed with the MeOH extracts or solvent-partitioned fractions. Furthermore, the efforts to identify the responsible compounds for the biological activities are very limited. In this study, we tested the inhibitory effect of extracts and solvent-partitioned fractions of O. humifusa against LPS-induced nitric oxide (NO) production in Raw264.7 cells. The butanol fractions of O. humifusa efficiently inhibited the production of NO in Raw264.7 cells, but it was not due to the reduction of cell viability. Bioassay-guided isolation of butanol fractions of O. humifusa allowed the isolation of three flavonoids isorhamnetin 3-O-${\beta}$-$\small{D}$-galactosyl-4'-O-${\beta}$-$\small{D}$-glucoside (1), isorhamnetin 3,4'-di-O-${\beta}$-$\small{D}$-glucoside (2) and isorhamnetin 3-O-${\beta}$-$\small{D}$-(6-O-${\alpha}$-$\small{L}$-rhamnosyl)glucoside (3), and one lignan syringaresinol O-${\beta}$-$\small{D}$-glucopyranoside (4). Among them, isorhamnetin 3-O-${\beta}$-$\small{D}$-galactosyl-4'-O-${\beta}$-$\small{D}$-glucoside (1) and isorhamnetin 3,4'-di-O-${\beta}$-$\small{D}$-glucoside (2) exhibited the moderate inhibitory effects against LPS-induced NO production. This is the first time to report anti-inflammatory effects of these compounds.

Free Radical Scavenging Activity of the Seed of Phaseolus calcaratus Roxburgh

  • Fang, Minghao;Cho, Hyoung-Kwon;Ahn, Yun-Pyo;Ro, Sang-Jeong;Jeon, Young-Mi;Whang, Wan Kyuun;Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • The seed of Phaseolus calcaratus Roxburgh (PHCR) is traditionally used for anti-pyretic and antiinflammatory effects. Although these effects are believed to be related to its antioxidant potential, little information is available for the mechanisms by which PHCR seed might scavenge free radicals or otherwise act as an antioxidant. In the present study, we purified some fractions from the ethanol extract of PHCR seed and evaluated each fraction's ability to scavenge free radicals generated by cell-free systems. We also identified active compound that is putatively responsible for free radical scavenging by analyzing NMR spectra. PHCR samples exhibited a concentration-dependent radical scavenging activity against hydroxyl radicals, superoxide anions, and DPPH radicals. Of the samples tested, a methanol-eluted sub-fraction from the PHCR extract, named $FF_4$, scavenged these radicals more effectively than the other fractions. We identified catechin-7-O-$\beta$-Dglucopyranoside as the active compound responsible for free radical scavenging potential of $FF_4$.

Anti-Inflammatory Activity of Compounds from the Whole Plant of Patrinia saniculaefolia

  • An, Ren-Bo;Na, Min-Kyun;Min, Byung-Sun;Chang, Hyeun-Wook;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • An in vitro bioassay-guide revealed that the methanol (MeOH) extract of the whole plant of Patrinia saniculaefolia (Valerianaceae) showed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2$ ($PGD_2$) and leukotriene $C_4$ ($LTC_4$) in mouse bone marrow-derived mast cells (BMMCs). Phytochemical study of the MeOH extract of this plant led to the isolation of twelve compounds; ${\beta}$-farnesene (1), squalene (2), nardostachin (3), patridoid I (4), patridoid II (5), patridoid II-A (6), oleanolic acid (7), oleanonic acid (8), 23-hydroxyursolic acid (9), oleanolic acid 3-O-${\alpha}$-L-arabinopyranoside (10), oleanolic acid 3-O-${\beta}$-D-glucopyranoside (11), oleanolic acid 3-O-[${\beta}$-D-xylopyranosyl-(1${\rightarrow}$3)-${\beta}$-D-(6-O-butyl)glucuronopyranoside] (12). Among the compounds, 4 and 5 strongly inhibited both the COX-2-dependent $PGD_2$ generation with $IC_{50}$ values of 8.7 and 13.6 ${\mu}M$, respectively, and the generation of $LTC_4$ in the 5-LOX dependent phase with $IC_{50}$ values of 41.7 and 46.9 ${\mu}M$, respectively, which suggest that the anti-inflammatory activity of P. saniculaefolia might occur in part via the inhibition of both $PGD_2$ and $LTC_4$ generation by 4 and 5.

Inhibition of Rat Lense Aldose Reductase by Flavonoids from Dandelions

  • Mok, So-Youn;Lee, Sul-Lim;Kim, Hye-Min;Lee, Jeong-Min;Lee, Dong-Gu;Ahn, Young-Hee;Park, Chun-Geon;Cho, Eun-Ju;Lee, Sang-Hyun
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.130-134
    • /
    • 2011
  • The purpose of this study was to evaluate the therapeutic potential of naturally occurring aldose reductase (AR) inhibitors isolated from Korean native plants. The MeOH extract and stepwise polarity fractions of dandelions were tested on rat lens AR inhibition in vitro. Of these, the EtOAc fractions from the leaves of dandelions (Traxacum coreanum, T. officinale, and T. ohwianum) exhibited an AR inhibitory activity ($IC_{50}$ values, 2.37, 1.73 and 2.68 ${\mu}g/ml$, respectively). A chromatography of the EtOAc fraction from the leaves of T. coreanum led to the further isolation of two flavonoids identified as luteolin and luteolin 7-O-glucopyranoside. These compounds exhibited strong AR inhibitory activity, with $IC_{50}$ values of 0.15 and 1.05 ${\mu}M$, respectively. These results suggested that luteolin is a potent AR inhibitor within dandelions and that it could be a useful lead compound in the development of a novel AR inhibitory agent against diabetic complications.

Steroidal saponins from Dioscorea nipponica Rhizomes and Their Biological Activity (부채마의 스테로이드 사포닌 및 생리활성)

  • Park, Kyoung Jin;Suh, Won Se;Cha, Joon Min;Park, Jong Eel;Woo, Kyeong Wan;Kim, Sun Yeo;Lee, Kang Ro
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.261-267
    • /
    • 2017
  • As part of the search for bioactive constituents of Korean medicinal plants, twelve steroids (1-12) were isolated from the rhizomes of Dioscorea nipponica. The isolated compounds were identified as diosgenin ($3{\beta}$, 25R)-spirost-5-en-3-ol (1), 25(R)-dracaenoside E (2), dioscin (3), gracillin (4), prosapogenin B (5), 25(R)-dracaenoside G (6), diosgenin 3-O-${\beta}$-D-glucopyranosyl($1{\rightarrow}3$)-${\beta}$-D-glucopyranoside (7), ophipogonin C′ (8), 7-oxodioscin (9), protodioscin (10), hypoglaucin F (11), and protoneogracillin (12). Their structures were characterized by spectroscopic data and identified by comparing these data with those in the literatures. All the isolates (1-12) were evaluated for their neuroprotective effects through induction of nerve growth factor in C6 glioma cells and effects on nitric oxide (NO) production in murine microglia cell line BV-2. Compounds 7 and 12 were found to induce upregulation of NGF secretion without causing significant cell toxicity and compound 4 exhibited potent anti-neuroinflammatory activity.

Isolation and Structural Determination of Free Radical Scavenging Compounds from Korean Fermented Red Pepper Paste (Kochujang)

  • Chung, Jin-Ho;Shin, Heung-Chule;Cho, Jeong-Yong;Kang, Seong-Koo;Lee, Hyoung-Jae;Shin, Soo-Cheol;Park, Keun-Hyung;Moon, Jae-Hak
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.463-470
    • /
    • 2009
  • Sixteen antioxidative active compounds isolated from the EtOAc layer of MeOH extracts of kochujang, Korean fermented red pepper paste, were structurally elucidated as fumaric acid, methyl succinate, succinic acid furan-2-yl ester methyl ester (gochujangate, a novel compound), 2-hydroxy-3-phenylpropanoic acid, 3,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 6,7-dihydroxy-2H-chromen-2-one (esculetin), caffeic acid, cis-p-coumaric acid, trans-p-coumaric acid, daidzin, genistin, apigenin 7-O-$\beta$-D-apiofuranosyl($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, apigenin 7-O-$\beta$-Dglucopyranoside, and quercetin 3-O-$\alpha$-L-rhamnopyranoside by mass spectrometry (MS) and nuclear magnetic resonance (NMR) experiments. These compounds were analyzed for the first time as antioxidants from kochujang.

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.

Complete $^1H$-NMR and $^{13}C$-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides

  • Yang, Heejung;Kim, Jeom Yong;Kim, Sun Ok;Yoo, Young Hyo;Sung, Sang Hyun
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.194-202
    • /
    • 2014
  • Background: Ginsenosides, the major ingredients of Panax ginseng, have been studied for many decades in Asian countries as a result of their wide range of pharmacological properties. The less polar ginsenosides, with one or two sugar residues, are not present in nature and are produced during manufacturing processes by methods such as heating, steaming, acid hydrolysis, and enzyme reactions. $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the identification of the less polar ginsenosides are often unavailable or incomplete. Methods: We isolated 21 compounds, including 10 pairs of 20(S) and 20(R) less polar ginsenosides (1-20), and an oleanane-type triterpene (21) from a processed ginseng preparation and obtained complete $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the following compounds, referred to as compounds 1-21 for rapid identification: 20(S)-ginsenosides Rh2 (1), 20(R)-Rh2 (2), 20(S)-Rg3 (3), 20(R)-Rg3 (4), 6'-O-acetyl-20(S)-Rh2 [20(S)-AcetylRh2] (5), 20(R)-AcetylRh2 (6), 25-hydroxy-20(S)-Rh2 (7), 25-hydroxy-20(S)-Rh2 (8), 20(S)-Rh1 (9), 20(R)-Rh1 (10), 20(S)-Rg2 (11), 20(R)-Rg2 (12), 25-hydroxy-20(S)-Rh1 (13), 25-hydroxy-20(R)-Rh1 (14), 20(S)-AcetylRg2 (15), 20(R)-AcetylRg2 (16), Rh4 (17), Rg5 (18), Rk1 (19), 25-hydroxy-Rh4 (20), and oleanolic acid 28-O-b-D-glucopyranoside (21).