• Title/Summary/Keyword: Global stability

Search Result 796, Processing Time 0.026 seconds

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

Fuzzy PD Speed Controller for Permanent Magnet Synchronous Motors

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.819-823
    • /
    • 2011
  • This paper presents a fuzzy PD speed control scheme for the robust speed tracking of a permanent magnet synchronous motor (PMSM). Motivated by the common control engineering knowledge that transient performance can be improved if the P gain is big and the D gain is small in the beginning, a linearizing control scheme with a fuzzy PD controller is proposed. The global system stability is analyzed and the proposed control algorithm is implemented using a TMS320F28335 DSP. Simulation and experimental results are given to verify the effectiveness of the proposed method.

Robust Control for SISO Nonlinear System using VSS Theory (VSS 이론을 이용한 SISO 비선형 시스템에 대한 강인성 제어)

  • Im, Kyu-Mann;Kim, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.523-525
    • /
    • 1998
  • In this paper, a robust control scheme for a class of SISO nonlinear dynamical system is proposed by using output-feedback linearization method. The presented control scheme is based on the VSS control theory concept. In this control scheme, we assume that the nonlinear dynamical system is minimum phase, i.e., the relative degree of the system is r < n and zero dynamics is stable. We also assume that the states of zero dynamics are not accessible. It is shown that the global asymptotically stability is guaranted under the proposed control scheme. The feasibility of the proposed control scheme is verified through a computer simulation.

  • PDF

Static Gait Generation of Quadruped Walking Robot (4각 보행 로봇의 정적 걸음새 생성)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.

Design of Fuzzy Model Based Controller for Uncertain Nonlinear Systems

  • Wook Chang;Joo, Young-Hoon;Park, Jin-Bae;Guanrong Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.185-189
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers, this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. The stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. Furthermore, the proposed method can be applied to partially known uncertain nonlinear systems. A numerical simulation is performed for the control of an inverted pendulum, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Relationships between the measures of GPS positioning error (GPS 위치결정 오차의 평가척도 사이의 관계)

  • Park, Chan-Sik;Kim, Il-Sun;Lee, Jang-Gyu;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • In GPS (Global Positioning System) positioning, various measures can be used to select satellites or to evaluate the positioning results. Among these, GDOP (Geometric Dilution of Precision) and RGDOP (Relative GDOP) are the most frequently used. Although these measures are frequently used, the relationship between them is not clearly known. Moreover, the condition number is used as a traditional measure of numerical stability in solving linear equations. Sometimes, the volume of a tetrahedon made by the line of sight vector is used for simplicity. All of these measures share some common properties as well as differences. The relationships between these measures are analyzed in this paper.

  • PDF

Fuzzy Linear Parameter Varying Modeling and Control of an Anti-Air Missile

  • Mehrabian, Ali Reza;Hashemi, Seyed Vahid
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-328
    • /
    • 2007
  • An analytical framework for fuzzy modeling and control of nonlinear systems using a set of linear models is presented. Fuzzy clustering is applied on the aerodynamic coefficients of a missile to obtain an optimal number of rules in a Tagaki-Sugeno fuzzy rule-set. Next, the obtained membership functions and rule-sets are applied to a set of linear optimal controllers towards extraction of a global controller. Reported simulations demonstrate the performance, stability, and robustness of the controller.

Output Feedback Control for Feedforward Nonlinear Systems with Time Delay (시간지연을 갖는 피드포워드 비선형시스템의 출력 피드백 제어)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • This paper presents the output feedback control design for feedforward nonlinear systems with input and output delay. The proposed output feedback controller is composed of a linear observer and a linear controller. It is shown that by using Lyapunov-Krasovskii theorem, the proposed controller ensures a global asymptotic stability for arbitrarily large delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

International Time Comparisons in Common-View via Global Positioning System (GPS) Satekkutes (GPS위성 동시수신법에 의한 국제시각비교)

  • 이창복;전인덕;정낙삼
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.81-87
    • /
    • 1990
  • International time comparisons using a commercial GPS receiver, with the common-view program of GPS satellite time links, have been carried out between Korea Standards Research Institute(KSRI) and Communications Research Laboratory(CRL) of Japan, and also between KSRI and United Stated Neval Observatory(USNO). The frequency stability is about 1.5 parts in $10^-13$ for the averaging time of 1day. The result of time comparisons obtained by the GPS common-view technique was about 10 times better than that by the LORAN-C(Long Range Navigation) ground wave technique.

  • PDF

Design of Switching-Type Controller for Discrete-Time Ts Fuzzy Systems (이산시간 TS 퍼지 시스템의 스위칭모드 제어기의 설계)

  • Kim, Joo-Won;Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2005-2007
    • /
    • 2001
  • A controller design problem for a discrete-time Takagi-Sugeno (TS) fuzzy systems is discussed. The switching-type controller is employed in this study. A switching-type fuzzy-model-based controller is constructed based on the spirit of "devide and conquer". The design condition of this controller is formulated in terms of linear matrix inequalities (LMIs), which guarantees the global stability of the controlled TS fuzzy systems. An example is included for ensuring the effecienct of the proposed control method.

  • PDF