• Title/Summary/Keyword: Global solution

Search Result 1,291, Processing Time 0.023 seconds

Formation of a Unique 1:2 Calcium-Calixquinone Complex in Aqueous Media

  • Kang, Sun-Kil;Lee, One-Sun;Chang, Suk-Kyu;Chung, Doo-Soo;Kim, Ha-Suck;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.793-799
    • /
    • 2011
  • We report the complexation behavior of calix[4]arenemonoquinone-triacid (CTAQ), which is an electroactive and water-soluble receptor for calcium ion. UV-visible and NMR spectroscopic studies revealed that CTAQ in aqueous media forms 1:2 as well as 1:1 (metal ion:CTAQ) stoichiometric complexes with $Ca^{2+}$, $Sr^{2+}$, and $Ba^{2+}$ ions. The nonlinear fitting of titration curves based on UV-visible absorption spectra showed that the binding constants of CTAQ for $Ca^{2+}$ ion are 4 $({\pm}2){\times}10^6\;M^{-1}$ for 1:1 and 1.4 $({\pm}0.5){\times}10^{11}\;M^{-2}$ for 1:2 complex. NMR conformational studies and the titration curves corroborate that the $Ca^{2+}$:CTAQ complex in aqueous solution is not present in the form of merely 1:1 one, being consistent with UV-visible spectrophotometric results. The Monte Carlo simulation supports the presence of a stable conformer of 1:2 complexes in which a $Ca^{2+}$ ion is interposed between two CTAQs at the global minimum. This is the first model of 1:2 stoichiometric complex of calix[4]arene and alkaline earth ions in aqueous media.

Efficient Data Clustering using Fast Choice for Number of Clusters (빠른 클러스터 개수 선정을 통한 효율적인 데이터 클러스터링 방법)

  • Kim, Sung-Soo;Kang, Bum-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, this method has the limitation to be used with fixed number of clusters because of only considering the intra-cluster distance to evaluate the data clustering solutions. Silhouette is useful and stable valid index to decide the data clustering solution with number of clusters to consider the intra and inter cluster distance for unsupervised data. However, this valid index has high computational burden because of considering quality measure for each data object. The objective of this paper is to propose the fast and simple speed-up method to overcome this limitation to use silhouette for the effective large-scale data clustering. In the first step, the proposed method calculates and saves the distance for each data once. In the second step, this distance matrix is used to calculate the relative distance rate ($V_j$) of each data j and this rate is used to choose the suitable number of clusters without much computation time. In the third step, the proposed efficient heuristic algorithm (Group search optimization, GSO, in this paper) can search the global optimum with saving computational capacity with good initial solutions using $V_j$ probabilistically for the data clustering. The performance of our proposed method is validated to save significantly computation time against the original silhouette only using Ruspini, Iris, Wine and Breast cancer in UCI machine learning repository datasets by experiment and analysis. Especially, the performance of our proposed method is much better than previous method for the larger size of data.

Using fuzzy-neural network to predict hedge fund survival (퍼지신경망 모형을 이용한 헤지펀드의 생존여부 예측)

  • Lee, Kwang Jae;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1189-1198
    • /
    • 2015
  • For the effects of the global financial crisis cause hedge funds to have a strong influence on financial markets, it is needed to study new approach method to predict hedge fund survival. This paper proposes to organize fuzzy neural network using hedge fund data as input to predict hedge fund survival. The variables of hedge fund data are ambiguous to analyze and have internal uncertainty and these characteristics make it challenging to predict their survival from the past records. The object of this study is to evaluate the predictability of fuzzy neural network which uses grades of membership to predict survival. The results of this study show that proposed system is effective to predict the hedge funds survival and can be a desirable solution which helps investors to support decision-making.

A Study on Channel Access Mechanism of LTE for Coexistence with Wi-Fi on 5 GHz Unlicensed Spectrum (5 GHz 비면허대역 무선랜과의 상호공존을 위한 LTE 시스템의 채널접속방법에 관한 연구)

  • Um, Jungsun;Yoo, Sungjin;Park, Seungkwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • With explosion of wireless traffic it is required to further investigate the technologies on acquiring available spectrum resources and on sharing frequency with existing users. In 3GPP, it is started to study on feasibility and functional requirement of LTE standard in order to extend cellular services offered on only licensed band to 5 GHz unlicensed band. Operating scenario on LTE in unlicensed band is focused on carrier aggregation with licensed band, and the coexistence with Wi-Fi services in 5 GHz band is concerned as a major requirement. For a single global solution framework for licensed assisted access to unlicensed spectrum, listen-before-talk(LBT) mechanism of European regulation for fair access to channel under the coexistence environments is currently examined in 3GPP. In this paper, we evaluate two types of LBT, frame based equipment and load based equipment, with considering LTE carrier aggregation feature and performances of file transferred time and throughput.

Direct Control of Displacement Using Displacement and Resistance Force Contribution Factor (변위 및 내력기여도계수를 이용한 정량적 변위 제어)

  • Kim, Young-Min;Kim, Chee-Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.91-100
    • /
    • 2005
  • The paper presents a direct method for the diplacement control and stiffness redesign using displacement and response force contribution factors. At first, these two kinds of factors are derived and the relationship between them is examined. An equation to evaluate the change of displacement according to the change of each member stiffness is proposed. For the statically determinate structures, the proposed equation gives the exact solution with no approximation. But it has some error in case of statically indeterminate structures because the redistribution of response forces is neglected in the equation. However, the equation may be very useful even for statically indeterminate structures because it provides the relationship between the member stiffness and the global displacement. The proposed method is expected to be useful for the displacement control of large space or hi-rise building structures where the stiffness design governs the design result.

  • PDF

A Basic Study on the Air Circulation System for Heating using Solar and Geothermal Heat - Focused on Trombe Wall Thermal Storage Performance using Solar Heat - (태양열과 지열을 이용한 난방용 공기순환시스템 기초연구 - 태양열을 이용한 트롬월식의 축열성능 중심으로 -)

  • Kim, Byung-Yun;Choi, Yong-Seok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • Each country in the world currently concentrates on shifting into clean energy, which can be alternative energy, for global environment protection and solution to the problem of fossil fuel depletion. The Korean government is predicted to develop renewable energy, such as solar power, ground power, and offshore wind power, and to increase their supply ratios by ending the use of coals and nuclear power plants. This study conducted experiments on thermal storage performance of Trombe wall thermal storage materials using solar power and simulations in order to offer baseline data for the development of a hybrid air circulation system for heating that can maximize efficiency by simultaneously using solar and geothermal power. The study results are as follows: (1) In all the specimens with 3m, 5m, and 7m in the length of thermal storage pipe, $5.7^{\circ}C$, $7.8^{\circ}C$, and $10.5^{\circ}C$ rose, respectively, as the thermal storage effect of the specimens attaching insulation film and black tape to the general funnel. They were most excellent in terms of thermal storage effect. (2) As a result of thermal performance evaluation on the II type specimens, II-3 ($7.8^{\circ}C$ rise) > II-4 ($5.3^{\circ}C$ rise) > II-1 ($3.9^{\circ}C$ rise) > II-2 ($2.3^{\circ}C$ rise) was revealed, and thus II-3 (insulation film + black tape) was most effective as shown in the I type. (3) This study analyzed air current and temperature distribution inside of the greenhouse by linking actually measured values and simulation interpretation results through the interpretation of CFD (computational fluid dynamics). As a result, the parts absorbing heat and discharging heat around the thermal storage pipe could be visibly classified, and temperature distribution inside of the greenhouse around the thermal storage pipe could be figured out.

A Study on File Sharing Mechanism for Network Energy Efficiency: Designing & Implementation Proxying System (네트워크 에너지 효율향상을 고려한 File Sharing 기술 연구)

  • Yun, Jung-Mee;Lee, Sang-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.135-140
    • /
    • 2011
  • Currently, studies have show that the network related energy consumption are increasing. and part of overall energy consumption of our society are too. So, that is important to look for energy-efficient network applications and protocols. A most of network energy consumption are due to network edge devices. in this paper, in order to cut down the emissions of carbon dioxide from ICT business, which contributes 2% of the global energy consumption, it is necessary to understand energy consumption in peer-to-peer system. In this paper, in this paper we propose a architecture based on the introduction of a p2p proxy. The model is analyzed analytically and numerically to reveal how these factors influence the overall power consumption in both steady state and flash crowd information exchange scenarios. Specifically, our results show that the proxy-based solution can provide up to 50% reduction in the energy consumption and, at the same time, a significant reduction in the average file download time.

System seismic performance of haunch repaired steel MRFs : dual panel zone modeling and a case study

  • Lee, Cheol-Ho
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.125-141
    • /
    • 1998
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, little is known about the effects of using such a repair scheme on the global seismic response of structures. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones. To investigate the effects of a repair on seismic performance, a case study was conducted for a 13-story steel frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Modeling the dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 0.017 radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80% (for the Oxnard record) and 70% (for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.