References
- Ackermann, C., R. McEnally and D. Ravenscraft. (1999). The performance of hedge funds: Risk, return and incentives. Journal of Finance, 54, 833-874. https://doi.org/10.1111/0022-1082.00129
- Agarwal, V., N. D. Daniel and N. Y. Naik. (2009). Role of managerial incentives and discretion in hedge fund performance. Journal of Finance, 64, 2221-2256. https://doi.org/10.1111/j.1540-6261.2009.01499.x
- Ammann, M. and P. Moerth. (2005). Impact of fund size on hedge fund performance. Journal of asset management, 6, 219-238. https://doi.org/10.1057/palgrave.jam.2240177
- Atsalakis, G. S. and K. P. Valavanis. (2009). Forecasting stock market short-term trends using a neurofuzzy based methodology. Expert Systems with Applications, 36, 10696-10707. https://doi.org/10.1016/j.eswa.2009.02.043
- Baba, N. and H. Goko. (2009). Survival analysis of hedge funds. Journal of Financial Research, 32, 71-93. https://doi.org/10.1111/j.1475-6803.2008.01243.x
- Babuska, R. and H. Verbruggen. (2003). Neuro-fuzzy methods for nonlinear system identification. Annual reviews in control, 27, 73-85. https://doi.org/10.1016/S1367-5788(03)00009-9
- Bae, J. K. (2010). An integrated approach to predict corporate bankruptcy with voting algorithms and neural networks. Korean business review, 3, 79-101
- Baquero, G., J. Horst and M. Verbeek. (2005). Survival, look-ahead bias, and persistence in hedge fund performance. Journal of Financial and Quantitative Analysis, 40, 493-517. https://doi.org/10.1017/S0022109000001848
- Bersini, H. and G. Bontempi. (1997). Now comes the time to defuzzify neuro-fuzzy models. Fuzzy sets and systems, 90, 161-169. https://doi.org/10.1016/S0165-0114(97)00082-1
- Ding, B. and H. Shawky. (2005). Hedge fund performance: 1990-2003, The Annual Financial Management Association Conference, Chicago.
- Han, J. M. (2008). Legislative proposals on the financial investment law for hedge funds. Business law review, 22, 339-381.
- Hedges, R. J. (2003). Size vs performance in the hedge fund industry. Journal of Financial Transformation, 10, 14-17.
- Jang, J. S. R. (1993). ANFIS: Adaptive network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665-685. https://doi.org/10.1109/21.256541
- Kitabo, C. A. and Kim, J. T. (2014). Survival analysis of bank loan repayment rate for customers of Hawassa commercial bank of Ethiopaia. Journal of the Korean Data & Information Science Society, 25, 1591-1598. https://doi.org/10.7465/jkdi.2014.25.6.1591
- Lee, D. and Chun, H. (2013). Analysis of factor of life planner’s satisfaction after turnover using the cumulative logit model. Journal of the Korean Data & Information Science Society, 24, 1369-1384. https://doi.org/10.7465/jkdi.2013.24.6.1369
- Lee, H. S. (2011). Evaluation of financial risk of hedge funds and funds of hedge funds, Ph. D. Thesis, Discipline of Finance, Business School, The University of Sydney.
- Melek Acar Boyacioglu and Derya Avci. (2010). An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul Stock Exchange. Expert Systems with Applications, 37, 7908-7912. https://doi.org/10.1016/j.eswa.2010.04.045
- Noh, H. J. (2011). Hedge fund theory and practice, Seoul, Parkyoungsa.
- Oh, K. J., Kim, T. Y., Jung, K. and Kim, C. (2011). Stock market stability index via linear and neural network autoregressive model. Journal of the Korean Data & Information Science Society, 22, 335-351.
- Shim, K. S., Ahn, J. J. and Oh. K. J. (2012). Multi-currencies portfolio strategy using principal component analysis and logistic regression. Journal of the Korean Data & Information Science Society, 23, 151-159. https://doi.org/10.7465/jkdi.2012.23.1.151
- Song, H. S. and Kim, J. K. (2009). Design and evaluation of ANFIS-based classification model. Journal of intelligence and information systems, 15, 151-165.
- Takagi, T. and M. Sugeno. (1983). Derivation of fuzzy control rules from human operator's control actions. In Proceedings of the IFAC symposium on fuzzy information, knowledge representation and decision analysis, 55-60.
Cited by
- 딥러닝 모형의 복잡도에 관한 연구 vol.28, pp.6, 2015, https://doi.org/10.7465/jkdi.2017.28.6.1217
- 재무비율을 활용한 포트폴리오 최적화 전략 vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1481
- A Decision-Tree Analysis of Influential Factors and Reasons for Unmet Dental Care in Korean Adults vol.37, pp.4, 2017, https://doi.org/10.15709/hswr.2017.37.4.294
- 전력 거래량 예측에서의 머신 러닝 성능 비교 vol.14, pp.5, 2015, https://doi.org/10.13067/jkiecs.2019.14.5.943
- 제 2형 성인 당뇨병 유병자의 혈당조절 취약군 예측: 제7기(2016-2018년도) 국민건강영양조사 자료 활용 vol.23, pp.1, 2021, https://doi.org/10.7586/jkbns.2021.23.1.31