• Title/Summary/Keyword: Global motion

Search Result 491, Processing Time 0.029 seconds

Domains of Attraction of a Forced Beam with Internal Resonance (내부공진을 가진 보의 흡인영역)

  • 이원경;강명란
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1711-1721
    • /
    • 1992
  • A nonlinear dissipative dynamical system can often have multiple attractors. In this case, it is important to study the global behavior of the system by determining the global domain of attraction of each attractor. In this paper we study the global behavior of a forced beam with two mode interaction. The governing equation of motion is reduced to two second-order nonlinear nonautonomous ordinary differential equations. When .omega. /=3.omega.$_{1}$ and .ohm.=.omega $_{1}$, the system can have two asymptotically stable steady-state periodic solutions, where .omega./ sub 1/, .omega.$_{2}$ and .ohm. denote natural frequencies of the first and second modes and the excitation frequency, respectively. Both solutions have the same period as the excitation period. Therefore each of them shows up as a period-1 solution in Poincare map. We show how interpolated mapping method can be used to determine the two four-dimensional domains of attraction of the two solutions in a very effective way. The results are compared with the ones obtained by direct numerical integration.

UNCERTAINTIES IN AMV ESTIMATION

  • Sohn, Eun-Ha;Cho, Hee-Je;Ou, Mi-Lim;Kim, Yoon-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.153-155
    • /
    • 2007
  • Korea Meteorological Administration (KMA) has operationally produced Atmospheric Motion Vector (AMV) from the consecutive MTSAT-1R satellite image dataset. Comparing with radiosonde data, our current AMV scheme shows more than 10 m/s RMSE. Therefore we need to improve continuously its accuracy. Many AMV producers have stated that the bad performance of the Height Assignment (HA) algorithm is the main reason of degrading the accuracy of AMV. The uncertainties in AMV HA can occur in the algorithm itself, used NWP profiles, and the performance of Radiative Transfer Model (RTM) etc. This study introduces currently operated AMV HA schemes and the impacts of NWP profile data and RTM that these schemes use were investigated. Finally we analyzed the relationship between vectors by vector tracking and heights assigned to each vector by using collocated wind profile dataset with radiosonde data. This study is a preliminary work to improve the accuracy of AMV by removing or decreasing the uncertainties in AMV estimation.

  • PDF

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

Time-series Analysis of Geodetic Reference Frame Aligned to International Terrestrial Reference Frame

  • Bae, Tae-Suk;Hong, Chang-Ki;Lee, Jisun;Altamimi, Zuheir;Sillard, Patrick;Boucher, Claude
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.313-319
    • /
    • 2021
  • The national geodetic reference frame of Korea was adopted in 2003, which is referenced to ITRF (International Terrestrial Reference Frame) 2000 at the epoch of January 1, 2002. For precise positioning based on the satellites, it should be thoroughly maintained to the newest global reference frame. Other than plate tectonic motion, there are significant events or changes such as earthquakes, antenna replacement, PSD (Post-Seismic Deformation), seasonal variation etc. We processed three years of GNSS (Global Navigation Satellite System) data(60 NGII CORS stations, 51 IGS core stations) to produce daily solutions minimally constrained to ITRF. From the time series of daily solutions, the sites with unexpected discontinuity were identified to set up an event(mostly antenna replacement). The combined solution with minimum constraints was estimated along with the velocity, the offsets, and the periodic signals. The residuals show that the surrounding environment also affects the time series to a certain degree, thus it should be improved eventually. The transformation parameters to ITRF2014 were calculated with stability and consistency, which means the national geodetic reference frame is properly aligned to the global reference frame.

Fast Motion Estimation Using the Statistical Characteristics of Motion Vector (움직임 벡터의 통계적 특성을 이용한 고속 움직임 추정)

  • Choi, Jung-Hyun;Park, Dae-Gyue;Lee, Kyeong-Hwan;Lee, Bub-Ki;Kim, Duk-Gyoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.21-27
    • /
    • 2000
  • In Fast motion estimaion algorithms, they reduce the computational complexity using the assumption that the matching error increases monotonically as the search moves away from the global minimum error In this paper, we first investigate the statistical characteristics of motion vector that the motion vector mostly occures on the side of small MAE (mean absolute error) between the reference search points when the MAE difference of them is large Therefore, we propose a fast motion estimation algorithm using this property and can reduce the number of search points The computer simulation result shows that the proposed method reduces computational complexity compared with conventional fast algorithms.

  • PDF

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

Comparison of Ranges of Motion in The Thoracolumbar Region for Clinical Diagnoses of Patients with Chronic Low Back Pain (만성요통 환자의 질환명에 따른 흉요추부의 관절가동범위 비교)

  • Lee, Sang-Wook;Kim, Suhn-Yeop
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • Purpose : The purpose of this study was to compare differences in thoracolumbar ranges of motions by comparing ratios among 4 type diagnosis for patient with chronic low back pain. Methods : The subjects were 58 chronic low back pain patients. A motion analysis program (Global Postural System) was used after photography for posture measurement. To analyze differences in mobility percentages and ratios of thoracolumbar ranges of motion, one-way ANOVA was used. Results : Regional difference spinal posture and movement were found to diagnosis patients with chronic low back pain. Comparison of thoracolumbar ranges of motion revealed significant differences in the thoracic region during forward-bending of the trunk (p<.05). In the upper thoracic region, the herniated intervertebral lumbar disc (HILD) group was significantly larger than the spinal stenosis/herniated intervertebral lumbar disc (SS/HILD) group (p<.05). In the lower thoracic region, chronic sprains (CS) were significantly greater than in the spinal stenosis (SS) group and in the (SS/HJLD) group (p<.05). Comparative analysis of thoracic/lumbar mobility ratio showed the CS group's ratio during forward bending was largest: 1.66, while the HILD group's ratio was smallest: 84 a significant difference between the two groups (p<.01). Diagnosis was not associated with difference in thoracolumbar backward-bending range of motion (p>.05). Conclusion : Theses results indicate the clinical efficacy of diagnosing for chronic low back pain by evaluating spinal mobility.

Hand Gesture Interface Using Mobile Camera Devices (모바일 카메라 기기를 이용한 손 제스처 인터페이스)

  • Lee, Chan-Su;Chun, Sung-Yong;Sohn, Myoung-Gyu;Lee, Sang-Heon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.621-625
    • /
    • 2010
  • This paper presents a hand motion tracking method for hand gesture interface using a camera in mobile devices such as a smart phone and PDA. When a camera moves according to the hand gesture of the user, global optical flows are generated. Therefore, robust hand movement estimation is possible by considering dominant optical flow based on histogram analysis of the motion direction. A continuous hand gesture is segmented into unit gestures by motion state estimation using motion phase, which is determined by velocity and acceleration of the estimated hand motion. Feature vectors are extracted during movement states and hand gestures are recognized at the end state of each gesture. Support vector machine (SVM), k-nearest neighborhood classifier, and normal Bayes classifier are used for classification. SVM shows 82% recognition rate for 14 hand gestures.

Progressive Residual Motion Estimation for Constructing Seamless Mosaics (이음매없는 모자이크 구성을 위한 단계적 잔여 움직임 추정)

  • Lee Cheong Woo;Choi Jae Gark;Lee Si-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.512-522
    • /
    • 2005
  • In this paper an algorithm of image alignments for constructing seamless mosaics is proposed. After the global alignment has been run, there may still be localized mis-registrations present in the mosaic. Due to mis-registrations, there may be seams in the mosaic, such as breaking, blurring, and doubling of lines. To solve this problem, we need an algorithm of residual motion estimation, which minimizes mis-registrations. In the conventional algorithms of residual motion estimation, computational powers are too heavy and estimators of camera parameters are additionally needed such as focal lengths. In the proposed algorithm, residual motion vectors are estimated with the adequate size of estimation and measurement windows and with adjustment of initial vectors according to the established priority. By construction of mosaics with the proposed algorithm, we demonstrate the removal of seams by mis-registrations.

Image Stabilization Algorithm for Close Watching UAV(Unmanned Aerial Vehicle) Aystem (근접감시용 무인항공기 시스템을 위한 영상 안정화 알고리즘)

  • Lee, Hong-Suk;Lee, Tae-Yeoung;Kim, Byoung-Soo;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.10-18
    • /
    • 2010
  • This paper proposes an image stabilization algorithm for close watching UAV(Unmanned Aerial Vehicle) using motion separation and stabilization mode. The motion of UAV is composed of its actual navigating motion and unwanted vibrating motion so that image sequences obtained from UAV are shaken randomly. In order to stabilize these images we separate the vibrating motion component from UAV motion and remove the effect caused by it from image sequences. In the proposed algorithm the motion and global intensity change of two consecutive images are modeled with 6 motion parameters and 2 intensity change parameters respectively. These modeled parameters are estimated by non-linear least square method based on Gauss-Newton algorithm. The vibrating motion component is separated from the estimated motion using IIR filtering and the geometric deformation caused by it is removed from image sequences. In order to apply the proposed method to real aerial image sequences with many abrupt changes of camera view, we proposed a stabilizing method using two different modes named as stabilizing and non-stabilizing mode. Experimental results show that the accuracy of motion estimation is 99% and the efficiency of removing the vibrating motion component is 90%. We apply the proposed method to real aerial image sequences and verified its stabilizing performance.