• 제목/요약/키워드: Global Newton method

검색결과 29건 처리시간 0.026초

다몸체 시스템의 운동방정식 형성방법 (A method of formulating the equations of motion of multibody systems)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.926-930
    • /
    • 1993
  • An efficient method of formulating the equations of motion of multibody systems is presented. The equations of motion for each body are formulated by using Newton-Eulerian approach in their generic form. And then a transformation matrix which relates the global coordinates and relative coordinates is introduced to rewrite the equations of motion in terms of relative coordinates. When appropriate set of kinematic constraints equations in terms of relative coordinates is provided, the resulting differential and algebraic equations are obtained in a suitable form for computer implementation. The system geometry or topology is effectively described by using the path matrix and reference body operator.

  • PDF

수위관측과 수리학적 하도추적에 의한 하천유량 간접추정 (Stream Discharge Estimation by Hydraulic Channel Routing and Stage Measurement)

  • 이상호;강신욱
    • 한국수자원학회논문집
    • /
    • 제34권5호
    • /
    • pp.543-549
    • /
    • 2001
  • 수리학적 하도추적으로부터 하천유량을 간접추정하였다. 짧은 하천구간의 세 지점 연속수위자료와 하천 단면 자료만을 사용하여 조도계수 추정b과 하천유량 계산이 가능하였다. 유량의 간접추정 과정에서, 상류-하류 경계조건을 수위-수위 조건으로 사용하였다. 미국 미시시피 강의 상류 구간 자료가 사용되었고 수리학적 하도추적에는 DWO-PER (operational dynamic wave model)를 이용하였다. DWOPER 모형에서 수정 Newton-Raphson법에 의한 조도계수 추정과정을 개선하기 위하여 SCE-UA 전역최적화 기법을 적용하였으며, SCE-UA 기법의 결과가 적은 오차를 보였다. 특정 홍수에 대하여 유량을 추정한 결과, 몇 개를 제외한 대부분의 계산유량이 10% 이내의 오차를 보였다.

  • PDF

Distortional effect on global buckling and post-buckling behaviour of steel box beams

  • Benmohammed, Noureddine;Ziane, Noureddine;Meftah, Sid Ahmed;Ruta, Giuseppe
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.717-727
    • /
    • 2020
  • The homotopy perturbation method (HPM) to predict the pre- and post-buckling behaviour of simply supported steel beams with rectangular hollow section (RHS) is presented in this paper. The non-linear differential equations solved by HPM derive from a kinematics where large twist and cross-sections distortions are considered. The results (linear and non-linear paths) given by the present HPM are compared to those provided by the Newton-Raphson algorithm with arc length and by the commercial FEM code Abaqus. To investigate the effect of cross-sectional distortion of beams, some numerical examples are presented.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.

상수관망의 수리학적 지배인자 결정기법 (Determination Algorithm of Hydraulic Parameters in Water Distribution System)

  • 박재홍;김상현;한건연
    • 물과 미래
    • /
    • 제29권6호
    • /
    • pp.217-224
    • /
    • 1996
  • 본 연구에서는 관망 시스템에서의 관경, 관경 및 전체유속, 유량 및 전체조도계수를 주어진 지점의 압력과 유량값을 이용하여 산정하는 기법을 개발하였다. 선택된 관망의 수리학적 인자들은 연속방정식과 에너지방정식을 재구성함으로써 결정될 수 있었다. 계수메트릭스를 해석하기 위하여 부가적인 에너지방정식이 사용되었다. 복잡한 관로 시스템에 대해 본 연구모형들이 적용되었다. 본 모형의 검증을 위해 계산결과를 KYPIPE2 모형에 역대입한 결과는 서로 잘 일치하고 있는 것으로 나타났다.

  • PDF

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

근사 선탐색을 이용한 동적 반응 최적화 (Dynamic response optmization using approximate search)

  • 김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.811-825
    • /
    • 1998
  • An approximate line search is presented for dynamic response optimization with Augmented Lagrange Multiplier(ALM) method. This study empolys the approximate a augmented Lagrangian, which can improve the efficiency of the ALM method, while maintaining the global convergence of the ALM method. Although the approximate augmented Lagragian is composed of only the linearized cost and constraint functions, the quality of this approximation should be good since an approximate penalty term is found to have almost second-order accuracy near the optimum. Typical unconstrained optimization algorithms such as quasi-Newton and conjugate gradient methods are directly used to find exact search directions and a golden section method followed by a cubic polynomial approximation is empolyed for approximate line search since the approximate augmented Lagrangian is a nonlinear function of design variable vector. The numberical performance of the proposed approach is investigated by solving three typical dynamic response optimization problems and comparing the results with those in the literature. This comparison shows that the suggested approach is robust and efficient.

최적화 문제 해결 기법 연구 (Resolutions of NP-complete Optimization Problem)

  • 김동윤;김상희;고보연
    • 한국국방경영분석학회지
    • /
    • 제17권1호
    • /
    • pp.146-158
    • /
    • 1991
  • In this paper, we deal with the TSP (Traveling Salesperson Problem) which is well-known as NP-complete optimization problem. the TSP is applicable to network routing. task allocation or scheduling. and VLSI wiring. Well known numerical methods such as Newton's Metheod. Gradient Method, Simplex Method can not be applicable to find Global Solution but the just give Local Minimum. Exhaustive search over all cyclic paths requires 1/2 (n-1) ! paths, so there is no computer to solve more than 15-cities. Heuristic algorithm. Simulated Annealing, Artificial Neural Net method can be used to get reasonable near-optimum with polynomial execution time on problem size. Therefore, we are able to select the fittest one according to the environment of problem domain. Three methods are simulated about symmetric TSP with 30 and 50-city samples and are compared by means of the quality of solution and the running time.

  • PDF