Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.6.717

Distortional effect on global buckling and post-buckling behaviour of steel box beams  

Benmohammed, Noureddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes)
Ziane, Noureddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes)
Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes)
Ruta, Giuseppe (Department of Structural & Geotechnical Engineering, University 'La Sapienza')
Publication Information
Steel and Composite Structures / v.35, no.6, 2020 , pp. 717-727 More about this Journal
Abstract
The homotopy perturbation method (HPM) to predict the pre- and post-buckling behaviour of simply supported steel beams with rectangular hollow section (RHS) is presented in this paper. The non-linear differential equations solved by HPM derive from a kinematics where large twist and cross-sections distortions are considered. The results (linear and non-linear paths) given by the present HPM are compared to those provided by the Newton-Raphson algorithm with arc length and by the commercial FEM code Abaqus. To investigate the effect of cross-sectional distortion of beams, some numerical examples are presented.
Keywords
post-buckling; homotopy; RHS; distortion; Newton-Raphson;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Mohri, F., Azrar, L. and Potier-Ferry, M. (2002), "Lateral post-buckling analysis of thin-walled open section beams", Thin-Wall. Struct., 40(12), 1013-1036. https://doi.org/10.1016/S0263-8231(02)00043-5.   DOI
2 Piovan, M.T. and Machado, S.P. (2011), "Thermo elastic dynamic stability of thin-walled beams with graded material properties", Thin-Wall. Struct., 49(3), 437-447. https://doi.org/10.1016/j.tws.2010.11.002.   DOI
3 Pluzsik, A. and Kollar, L.P. (2006), "Torsion of closed section, orthotropic, thin-walled beams", Int. J. Solids Struct., 43(17), 5307-5336. https://doi.org/10.1016/j.ijsolstr.2005.08.001.   DOI
4 Ren, Y., Cheng, W., Wang, Y. and Wang, B. (2017), "Analysis of the distortion of cantilever box girder with inner flexible diaphragms using initial parameter method", Thin-Wall. Struct., 117, 140-154. https://doi.org/10.1016/j.tws.2017.04.010.   DOI
5 Ren, Y., Cheng, W., Wang, Y., Chen, Q. and Wang, B. (2017), "Distortional analysis of simply supported box girders with inner diaphragms considering shear deformation of diaphragms using initial parameter method", Eng. Struct., 145, 44-59. https://doi.org/10.1016/j.engstruct.2017.05.004.   DOI
6 Saoula, A., Meftah, S.A., Mohri, F. and Daya, E.M. (2016), "Lateral buckling of box beam elements under combined axial and bending loads", J. Constr. Steel Res., 116, 141-155. https://doi.org/10.1016/j.jcsr.2015.09.009.   DOI
7 Shakourzadeh, H., Guo, Y.Q. and Batoz, J.L. (1995), "A torsion bending element for thin-walled beams with open and closed cross sections", Comput. Struct., 55(6), 1045-1054. https://doi.org/10.1016/0045-7949(94)00509-2.   DOI
8 Silvestre, N. and Camotim, D. (2006), "Vibration behaviour of axially compressed cold-formed steel members", Steel Compos. Struct., 6(3), 221-236. https://doi.org/10.12989/scs.2006.6.3.221.   DOI
9 Smith, E.C. and Chopra, I. (1991), "Formulation and evaluation of an analytical model for composite box-beams", J. Am. Helicopt. Soc., 36(3), 23-35. https://doi.org/10.4050/JAHS.36.23.   DOI
10 Suetake, Y. and Hirashima, M. (1997), "Extended trigonometric series analysis of box girders with diaphragms", J. Eng. Mech., 123(4), 293-301. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:4(293).   DOI
11 Szymczak, C. and Kujawa, M. (2017), "Distortional buckling of thin-walled columns of closed quadratic cross-section", Thin-Wall. Struct., 113, 111-121. https://doi.org/10.1016/j.tws.2017.01.006.   DOI
12 Vlasov, V.Z. (1940), Thin Walled Elastic Beams. Russian original book; Stroizdat, Moscow, French translation (1962): Pieces Longues En Voiles Minces, Eyrolles, Paris, France.
13 Vo, T.P. and Lee, J. (2009), "Free vibration of axially loaded thin-walled composite box beams", Compos. Struct., 90(2), 233-241. https://doi.org/10.1016/j.compstruct.2009.03.010.   DOI
14 Yang, L., Shi, G., Zhao, M. and Zhou, W. (2017), "Research on interactive buckling behavior of welded steel box-section columns", Thin-Wall. Struct., 115, 34-47. https://doi.org/10.1016/j.tws.2017.01.030.   DOI
15 Sokolnikoff, I.S. (1946), Mathematical Theory of Elasticity, McGraw-Hill, New York, USA.
16 Esmaeilpour, M. And Ganji, D.D. (2007), "Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate", Phys. Lett. A, 372(1), 33-38. https://doi.org/10.1016/j.physleta.2007.07.002.   DOI
17 Abaqus Standard User's Manual, Version 6.4. (2003), Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, USA.
18 Bebiano, R., Basaglia, C., Camotim, E. and Gonçalves, R. (2018), "GBT buckling analysis of generally loaded thin-walled members with arbitrary flat-walled cross-sections", Thin-Wall. Struct., 123, 11-24. https://doi.org/10.1016/j.tws.2017.10.04.   DOI
19 Benscoter, S.U. (1954), "A theory of torsion bending for multicell beams", J. Appl. Mech., 20, 25-34.   DOI
20 Ed-dinari A., Mottaqui, H., Braikat, B., Jamal, M., Mohri, F. and Damil, N. (2014), "Large torsion analysis of thin-walled open sections beams by the Asymptotic Numerical Method", Eng. Struct., 81, 240-255. https://doi.org/10.1016/j.engstruct.2014.09.045.   DOI
21 Ferrarotti, A., Ranzi, G., Taig, G. and Piccardo, G. (2017), "Partial interaction analysis of multi-component members within the GBT", Steel Compos. Struct., 25(5), 625-638. https://doi.org/10.12989/scs.2017.25.5.625.   DOI
22 GBTUL, Version 2.0.4.3 (2013), The Generalised Beam Theory Research Group, Instituto superior Tecnico, Lisbon, Portugal.
23 Jafarimoghaddam, A.(2019), "On the Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids", Eng. Sci. Technol. Int. J., 22(2), 439-451. https://doi.org/10.1016/j.jestch.2018.11.001.
24 Gonçalves, R. and Camotim, D. (2004), "Buckling analysis of single and multi-cell closed thin-walled metal members using Generalised Beam Theory", Proceedings of the 4th International Conference On Coupled Instabilities In Metal Structures, Rome, 27-29/9.
25 Gonçalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., 10(3), 223-243. https://doi.org/10.12989/scs.2010.10.3.223.   DOI
26 He, J.H. (2006), "Homotopy perturbation method for solving boundary value problems", Phys. Lett. A, 350, 87-88. https://doi.org/10.1016/j.physleta.2005.10.005.   DOI
27 Jang, G.W., Kim, K.J. and Kim, Y.Y. (2008), "Higher-order beam analysis of box beams connected at angled joints subject to out-of-plane bending and torsion", Int. J. Numer. Method. Eng., 75(11), 1361-1384. https://doi.org/10.1002/nme.2314.   DOI
28 Kim, J.H. and Kim, Y.Y. (1999), "Analysis of thin-walled closed beams with general quadrilateral cross sections", J. Appl. Mech., 66, 904-912. https://doi.org/10.1115/1.2791796.   DOI
29 Kanishchev, R. and Kvocak, V. (2019), "Local buckling of rectangular steel tubes filled with concrete", Steel Compos. Struct., 31(2), 201-216.   DOI
30 Kim, C. and White, S.R. (1997), "Thick-walled composite beam theory including 3-d elastic effects and torsional warping", lnt. J. Solids Struct., 34, 4237-4259. https://doi.org/10.1016/S0020-7683(96)00072-8.   DOI
31 Lanc, D. Vo, T.P., Turkalj, G. and Lee, J. (2015), "Buckling analysis of thin-walled functionally graded sandwich box beams", Thin-Wall. Struct., 86, 148-156. https://doi.org/10.1016/j.tws.2014.10.006.   DOI
32 Kim, J. H. and Kim, Y.Y. (2001), "Thin-walled multicell beam analysis for coupled torsion, distortion, and warping deformations", J. Appl. Mech., 68, 260-269. https://doi.org/10.1115/1.1357166.   DOI
33 Kim N.I. (2009), "Dynamic stiffness matrix of composite box beams", Steel Compos. Struct., 9(5), 473-497. https://doi.org/10.12989/scs.2009.9.5.473.   DOI
34 Kim N.I., Shin, D.K. and Park, Y.S. (2010), "Coupled stability analysis of thin-walled composite beams with closed cross-section", Thin-Wall. Struct., 48(8), 581-596. https://doi.org/10.1016/j.tws.2010.03.006.   DOI
35 Librescu, L. and Song, O. (2006), Thin-Walled Composite Beams Theory and Application, Springer, Dordrecht, Netherlands.
36 Loughlan, J. and Ata, M. (1997), "The behaviour of open and closed section carbon fibre composite beams subjected to constrained torsion", Compos. Struct., 38(1-4), 631-647. https://doi.org/10.1016/S0263-8223(97)00101-3.   DOI
37 Mentrasti, L. (1990), "Distortion (and Torsion) of rectangular thin-walled beams", Thin- Wall. Struct., 10(3), 175-193. https://doi.org/10.1016/0263-8231(90)90062-4.   DOI