• 제목/요약/키워드: GloSea

검색결과 59건 처리시간 0.016초

대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성 (Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia)

  • 송형규;윤대옥;이조한;신범철
    • 한국지구과학회지
    • /
    • 제45권1호
    • /
    • pp.19-36
    • /
    • 2024
  • 1개월과 3개월 장기 예보를 지원하기 위해 기상청에서 현업운용 중인 GloSea6 기후예측시스템에는 대기 중 대기화학-에어로졸 물리과정(UKCA)이 연동되어 있지 않다. 본 연구에서는 저해상도의 GloSea6와 여기에 대기화학-에어로졸 과정을 연동시킨 GloSea6-UKCA를 CentOS 기반 리눅스 클러스터에 설치하여 2000년 봄철에 대한 예비적인 예측결과를 살펴보았다. 현업 고해상도 GloSea6 모델이 방대한 전산자원을 필요로 한다는 점을 고려할 때, 저해상도 GloSea6와 GloSea6-UKCA 모델은 대기화학-에어로졸 과정의 연동에 따른 효과를 살펴보기에 적합하다. 저해상도 GloSea6와 GloSea6-UKCA는 2000년 3월 1일 00Z부터 75일 간 구동되었으며, 두 모델이 예측한 2000년 4월 지상 기온과 일평균 강수량의 공간 분포를 ERA5 재분석자료와 비교하였다. GloSea6-UKCA가 예측한 기온과 강수 분포는 기존 GloSea6에 비해 ERA5 재분석자료에 보다 더 유사해졌다. 특히 우리나라를 포함한 동아시아 지역에 대해 과대 모의 경향이 있던 봄철 지상 기온과 일평균 강수량의 예측 결과의 개선이 주목할 만하다. 또한 적분 시간에 따른 예측된 기온과 강수량의 시계열에서도 GloSea6-UKCA가 GloSea6보다 재분석자료에 더 가까워진 시간 변화 경향을 살펴볼 수 있었다. 이는 대기화학-에어로졸 과정이 GloSea6에 연동되었을 때 동아시아지역 봄철 예측 성능이 개선될 수 있음을 보여준다.

기후예측시스템(GloSea5) 열대성저기압 계절예측 특성 (Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast)

  • 이상민;이조한;고아름;현유경;김윤재
    • 대기
    • /
    • 제30권3호
    • /
    • pp.209-220
    • /
    • 2020
  • Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.

기상청 기후예측시스템(GloSea6) - Part 1: 운영 체계 및 개선 사항 (The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements)

  • 김혜리;이조한;현유경;황승언
    • 대기
    • /
    • 제31권3호
    • /
    • pp.341-359
    • /
    • 2021
  • This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and technical aspects of all the GloSea6 components - atmosphere, land, ocean, and sea-ice models. Also, the operational architectures of GloSea6 installed on the new KMA supercomputer are presented. It includes (1) pre-processes for atmospheric and ocean initial conditions with the quasi-real-time land surface initialization system, (2) the configurations for model runs to produce sets of forecasts and hindcasts, (3) the ensemble statistical prediction system, and (4) the verification system. The changes of operational frameworks and computing systems are also reported, including Rose/Cylc - a new framework equipped with suite configurations and workflows for operationally managing and running Glosea6. In addition, we conduct the first-ever run with GloSea6 and evaluate the potential of GloSea6 compared to GloSea5 in terms of verification against reanalysis and observations, using a one-month case of June 2020. The GloSea6 yields improvements in model performance for some variables in some regions; for example, the root mean squared error of 500 hPa geopotential height over the tropics is reduced by about 52%. These experimental results show that GloSea6 is a promising system for improved seasonal forecasts.

Low-GloSea6 기상 예측 소프트웨어의 머신러닝 기법 적용 연구 (A Study of the Application of Machine Learning Methods in the Low-GloSea6 Weather Prediction Solution)

  • 박혜성;조예린;신대영;윤은옥;정성욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.307-314
    • /
    • 2023
  • 슈퍼컴퓨팅 기술 및 하드웨어 기술이 발전함에 따라 기후 예측 모델도 고도화되고 있다. 한국 기상청 역시 영국 기상청으로부터 GloSea5을 도입하였고 한국 기상 환경에 맞추어 업데이트된 GloSea6를 운용 중이다. 각 대학 및 연구기관에서는 슈퍼컴퓨터보다는 사양이 낮은 중소규모 서버에서 활용하기 위해 저해상도 결합모델인 Low-GloSea6를 구축하여 사용하고 있다. 본 논문에서는 중소규모 서버에서의 기상 연구의 효율성을 위한 Low-GloSea6 소프트웨어를 분석하여 가장 많은 CPU Time을 점유하는 대기 모델의 tri_sor.F90 모듈의 tri_sor_dp_dp 서브루틴을 Hotspot으로 검출하였다. 해당 함수에 머신러닝의 한 종류인 선형 회귀 모델을 적용하여 해당 기법의 가능성을 확인한다. 이상치 데이터를 제거 후 선형 회귀 모델을 학습한 결과 RMSE는 2.7665e-08, MAE는 1.4958e-08으로 Lasso 회귀, ElasticNet 회귀보다 더욱 좋은 성능을 보였다. 이는 Low-GloSea6 수행 과정 중 Hotspot으로 검출된 tri_sor.F90 모듈에 머신러닝 기법 적용 가능성을 확인하였다.

기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성 (The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2))

  • 이상민;현유경;신범철;지희숙;이조한;황승언;부경온
    • 대기
    • /
    • 제34권2호
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가 (Data processing system and spatial-temporal reproducibility assessment of GloSea5 model)

  • 문수진;한수희;최광순;송정현
    • 한국수자원학회논문집
    • /
    • 제49권9호
    • /
    • pp.761-771
    • /
    • 2016
  • 기상청에서 운영하고 제공하는 전지구 계절예측시스템 GloSea5 (Global Seasonal forecasting system version 5)자료를 활용하여 용담댐유역에 적용하고자 하였다. GloSea5는 예측자료(Forecast; 이하 FCST)와 과거재현자료(Hindcast; 이하 HCST)로 제공되며 공간 수평해상도는 N216 ($0.83^{\circ}{\times}0.56^{\circ}$)으로 중위도에서 약 60km이다. 이를 유역단위 물관리에 활용하기 위해서는 시 공간적인 상세화가 필요하므로 통계적 상세화 기법을 수행하여 변수가 갖는 계통적인 지역 오차를 보정함으로써 자료의 신뢰도를 향상시키고자 하였다. HCST자료는 앙상블 형태로 주어지며 용담댐 유역의 앙상블 평균에 대한 6번 격자의 통계적인 상관성($R^2=0.60$, RMSE=88.92, NSE=0.57)이 가장 높게 나타났다. 또한 계절분석시 여름철의 경우 원시 GloSea5 강우량이 600.1mm로 관측값인 816.1mm 대비 -26.5%로 가장 많은 차이를 보였으며 상세화 후 GloSea5 강우량은 -3.1%의 오차율을 보였다. 대부분의 과소 모의된 결과가 여름철 홍수기에 해당되는 강우로 상세화 이후 강우가 회복되는 매우 중요한 결과를 보였다. 계절별 Moran's I 지수를 이용한 공간적 자기상관분석 결과 역시 통계적으로 유의성 있는 공간적인 분포를 나타냄으로써 자료의 불확실성을 개선하고 시 공간적인 정확도와 타당성을 입증하였다. HCST기간에 대한 GloSea5의 앙상블 강우에 대한 신뢰도를 향상시킴으로써 수문학적인 영향을 평가하기 위한 자료로서의 충분한 가능성을 확보하였으며 이러한 시 공간적인 재현성에 대한 평가결과는 향후 유역단위 물관리를 위한 기초자료로서 매우 중요한 역할을 할 것이다.

기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가 (Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5))

  • 이소정;현유경;이상민;황승언;이조한;부경온
    • 대기
    • /
    • 제30권3호
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

기상청 기후예측시스템 개선에 따른 월별 앙상블 예측자료 성능평가 (Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA)

  • 함현준;이상민;현유경;김윤재
    • 대기
    • /
    • 제29권2호
    • /
    • pp.149-164
    • /
    • 2019
  • The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.

기상예측시스템 소프트웨어 조사 및 GloSea6 소프트웨어 저해상도 설치방법 구현 (A Survey of Weather Forecasting Software and Installation of Low Resolution of the GloSea6 Software)

  • 정성욱;이창현;정동민;염기훈
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.349-361
    • /
    • 2021
  • 컴퓨터 기술의 발전과 기상예보 모델 및 예측방식의 고도화에 따라 더 고성능의 기상예측 소프트웨어가 개발되었으며 슈퍼컴퓨터를 활용한 소프트웨어 수행으로 더욱 정밀하고 정확한 기상예보가 가능하게 되었다. 본 논문에서는 주요 6개국이 사용하고 있는 기상예측 예보 모델을 조사하여 그 특징들을 분석하고 현재 한국 기상청에서 영국 기상청과 2012년부터 협업하여 사용하고 GloSea 소프트웨어에 대하여 설명한다. 그런데 기존의 GloSea는 기상청 슈퍼컴퓨터에서만 수행되어 다양한 연구자들의 전문 분야별 세분화된 연구에 어려움이 있었다. 따라서 본 논문에서는 현재 우리나라에서 사용하고 있는 GloSea6 기반의 저해상도 버전을 로컬시스템에 사용할 수 있는 표준 실험환경을 구축하고 이를 테스트해봄으로써 연구실 환경에서 수행 가능한 저해상도 GloSea6의 로컬화를 제시하고자 한다. 즉, 본 논문에서는 사용자 단말기-계산서버-리퍼지토리 서버로 구성되는 기본 아키텍처를 구축하고 해당 소프트웨어의 실행 테스트를 수행함으로써 저해상도 GloSea6의 로컬 이식성을 검증한다.

ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선 (An enhancement of GloSea5 ensemble weather forecast based on ANFIS)

  • 문건호;김선호;배덕효
    • 한국수자원학회논문집
    • /
    • 제51권11호
    • /
    • pp.1031-1041
    • /
    • 2018
  • 본 연구에서는 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법을 개발하고 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역을 선정하였으며, 개선 기법은 ANFIS 기반의 전 후처리기법으로 구성된다. 전처리 기법에서 GloSea5의 앙상블 멤버에 가중치를 부여하며(OWM), 후처리 과정에서는 전처리결과를 편의보정 한다(MOS). 평가결과 편의보정된 GloSea5에 비해 예측성능이 개선되었으며, CASE3, CASE1, CASE2 순으로 모의성능이 우수하였다. 전처리 기법은 강수의 변동성이 큰 계절에 개선효과가 우수하였으며, 후처리 기법은 전처리로 개선하지 못한 오차를 줄 일 수 있는 것으로 나타났다. 따라서 본 연구에서 개발한 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법은 전 후처리 기법을 함께 사용하는 것이 가장 좋으며, 특히 여름철과 같이 강수의 변동성이 큰 계절에 활용성이 높을 것으로 판단된다.