Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.3.209

Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast  

Lee, Sang-Min (Operational Systems Development Department, National Institute of Meteorological Sciences)
Lee, Jo-Han (Operational Systems Development Department, National Institute of Meteorological Sciences)
Ko, A-Reum (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
Hyun, Yu-Kyung (Operational Systems Development Department, National Institute of Meteorological Sciences)
Kim, YoonJae (Operational Systems Development Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.30, no.3, 2020 , pp. 209-220 More about this Journal
Abstract
Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.
Keywords
Tropical storm; GloSea5; seasonal forecast;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 3576-3592, doi:10.1175/mwr-d-12-00254.1.   DOI
2 LaRow, T. E., L. Stefanova, D.-W. Shin, and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009gl041459.   DOI
3 Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967-988, doi:10.1175/WAF-D-17-0165.1.   DOI
4 Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-H. Byun, and C. H. Cho, 2016: Verification and comparison of forecast skill between Global Seasonal Forecasting System version 5 and Unified Model during 2014. Atmosphere, 26, 59-72. doi:10.14191/Atmos.2016.26.1.059 (in Korean with English abstract).   DOI
5 Lim, S.-M., Y.-K. Hyun, H.-S. Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract).   DOI
6 MacLachlan, C., and Coauthors, 2014: Global Seasonal Forecast System version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396.   DOI
7 Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation No. 27, Institut Pierre-Simon Laplace (IPSL), 300 pp.
8 Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO 5.0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014.   DOI
9 Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (system 4). ECMWF Tech. Memo. No. 656, 49 pp.
10 Nicholls, N., 1979: A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Wea. Rev., 107, 1221-1224, doi:10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2.   DOI
11 Pan, L. L., and Coauthors, 2015: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophy. Res. Lett., 41, 7785-7790, doi:10.1002/2014gl061921.   DOI
12 Pielke, R. A., Jr., and R. A. Pielke Sr., 1997: Hurricanes: Their Nature and Impacts on Society. Wiley, 279 pp.
13 Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled Model. Geosci. Model Dev. Discuss., 8, 2529-2554, doi:10.5194/gmdd-8-2529-2015.   DOI
14 Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133-152, doi:10.1175/jcli-d-12-00012.1.   DOI
15 Schreck, C. J., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774-788, doi:10.1175/MWR-D-11-00110.1.   DOI
16 Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Sy., 6, 1154-1172, doi:10.1002/2014MS000372.   DOI
17 Southern, R. L., 1979: The global socio-economic impact of tropical cyclones. Aust. Meteor. Mag., 27, 175-195.
18 Valcke, S., R. Budich, M. Carter, E. Guilyardi, M.-A. Foujols, M. Lautenschlager, R. Redler, L. Steenman-Clark, and N. Wedi, 2006: The PRISM Software Framework and the OASIS Coupler. Proc. The 18 Annual BMRC Modelling Workshop, Melbourne [Available online at http://hdl.handle.net/11858/00-001M-0000-0028-52D2-5].
19 Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 7994-8016, doi:10.1175/jcli-d-14-00158.1.   DOI
20 Villarini, G., and G. A. Vecchi, 2013: Multiseason lead forecast of the North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE). J. Climate, 26, 3631-3643, doi:10.1175/jcli-d-12-00448.1.   DOI
21 Vitart, F., M. R. Huddleston, M. Deque, D. Peake, T. N. Palmer, T. N. Stockdale, M. K. Davey, S. Ineson, and A. Weisheimer, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007gl030740.   DOI
22 Wang, Z., W. Li, M. S. Peng, X, Jiang, R. McTaggart-Cowan, and C. Davis, 2018: Predictive skill and predictability of North Atlantic tropical cyclogenesis in different synoptic flow regimes. J. Atmos. Sci., 75, 361-378.   DOI
23 Vitart, F., and A. W. Robertson, 2018: The Sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci., 1, 3, doi:10.1038/s41612-0013-0.   DOI
24 Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017.   DOI
25 Wang, H., and Coauthors, 2014: How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J. Climate, 27, 5673-5692, doi:10.1175/jcli-d-13-00625.1.   DOI
26 Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374-399.   DOI
27 Vecchi, G. A., and G. Villarini, 2014: Next season's hurricanes. Science, 343, 618-619, doi:10.1126/science.1247759.   DOI
28 Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-88-1509-2015.   DOI
29 Yamaguchi, M., F. Vitart, S. Maeda, and Y. Takaya, 2016: Were one-month global ensembles capable of predicting inactive TC activity in the western North Pacific basin during early 2016? Proc. 2016 Fall Meeting of Meteorological Society of Japan (In Japanese).
30 Zhang, G., and Z. Wang, 2019: North Atlantic Rossby wave breaking during the hurricane season: association with tropical and extratropical variability. J. Climate, 32, 3777-3801, doi:10.1175/JCLI-D-18-0299.1.   DOI
31 Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 2206-2219, doi:10.1002/qj.2516.   DOI
32 Zhang, G., Z. Wang, M. S. Peng, and G. Magnusdottir, 2017: Characteristics and impacts of extratropical Rossby wave breaking during the Atlantic hurricane season. J. Climate, 30, 2363-2379, doi:10.1175/JCLI-D-16-0425.1.   DOI
33 Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 3858-3868, doi:10.1175/2010mwr3366.1.   DOI
34 Bell, R., K. Hodges, P. L. Vidale, J. Strachan, and M. Roberts, 2014: Simulation of the global ENSO-tropical cyclone teleconnection by a high-resolution coupled general circulation model. J. Climate, 27, 6404-6422, doi:10.1175/jcli-d-13-00559.1.   DOI
35 Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus A, 59, 539-561, doi:10.1111/j.1600-0870.2007.00251.x.   DOI
36 Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.   DOI
37 Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880-9902, doi:10.1175/jcli-d-12-00549.1.   DOI
38 Camargo, S. J., A. H. Sobel, A. G. Barnston, and P. J. Klotzbach, 2010: The Influence of natural climate variability on tropical cyclones, and seasonal forecasts of tropical cyclone activity. In J. C. L. Chan et al. Eds., Global Perspectives on Tropical Cyclones, World Scientific, 325-360, doi:10.1142/9789814293488 0011.
39 Chan, J. C. L., J.-E. Shi, and C.-M. Lam, 1998: Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecast., 13, 997-1004, doi:10.1175/1520-0434(1998)013<0997:SFOTCA>2.0.CO;2.   DOI
40 Chan, J. C. L., J.-E. Shi, and K. S. Liu, 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecast., 16, 491-498, doi:10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2.   DOI
41 Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782, doi:10.1256/qj.04.101, 2005.   DOI
42 Finan, C., H. Wang, and J. Schemm, 2017: CFSv2-based hybrid dynamical-statistical model for week 3 to 4 forecast of Atlantic/Pacific tropical storm activity. Prepints, 42nd NOAA Annual Climate Diagnostics and Prediction Workshop, Norman, OK, Science and Technology Infusion Climate Bulletin, NOAA's National Weather Service, 49-52.
43 Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458-3465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.   DOI
44 Byun, H.-R., 2009: Comparative analysis of the drought diagnosis and related systems. J. Korean Soc. Hazard Mitig., 9, 7-18 (in Korean).
45 Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 1669-1683, doi:10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2.   DOI
46 Ho, C.-H., J.-H. Kim, H.-S. Kim, W. Choi, M.-H. Lee, H.-D. Yoo, T.-R. Kim, and S. Park, 2013: Technical note on a track-pattern-based model for predicting seasonal tropical cyclone activity over the western North Pacific. Adv. Atmos. Sci., 30, 1260-1274, doi:10.1007/s00376-013-2237-6.   DOI
47 Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 2914-2932, doi:10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2.   DOI
48 Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 1362-1373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.   DOI
49 Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The sea ice model documentation and software user's manual, version 4.1. Tech. Rep. LA-CC-06-012, 76 pp.
50 Janiga, M. A., C. J. Schreck, J. A. Ridout, M. Flatau, N. P. Barton, E. J. Metzger, and C. A. Reynolds, 2018: Subseasonal forecasts of convectively coupled equatorial waves and the MJO: activity and predictive skill. Mon. Wea. Rev., 146, 2337-2360, doi:10.1175/MWR-D-17-0261.1.   DOI
51 Kim, H.-S., C.-H. Ho, J.-H. Kim, and P.-S. Chu, 2012: Track-pattern-based model for seasonal prediction of tropical cyclone activity in the western North Pacific. J. Climate, 25, 4660-4678, doi:10.1175/JCLI-D-11-00236.1.   DOI
52 Kim, H.-S., G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to $CO_2$ doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 8034-8054, doi:10.1175/jcli-d-13-00475.1.   DOI