Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.2.149

Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA  

Ham, Hyunjun (Global Environment System Research Division, National Institute of Meteorological Science)
Lee, Sang-Min (Global Environment System Research Division, National Institute of Meteorological Science)
Hyun, Yu-Kyug (Global Environment System Research Division, National Institute of Meteorological Science)
Kim, Yoonjae (Global Environment System Research Division, National Institute of Meteorological Science)
Publication Information
Atmosphere / v.29, no.2, 2019 , pp. 149-164 More about this Journal
Abstract
The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.
Keywords
GloSea5; seasonal prediction; monthly ensemble;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ahn, J.-B., H.-S. Park, H.-S. Lee, W.-S. Lee, and J.-W. Kim, 1997: A Study of Climate Drift in Atmosphere and Ocean GCMs. J. Korean Meteorological Society, 33, 509-520 (in Korean with English abstract).
2 Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 1891-1910, doi:10.1175/2010MWR3615.1.   DOI
3 Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Q. J. Roy. Meteor. Soc., 135, 767-776.   DOI
4 Choi, J., S.-W. Son, Y.-G. Ham, J.-Y. Lee, and H.-M. Kim, 2015: Seasonal-to-interannual prediction skills of near-surface air temperature in the CMIP5 decadal hindcast experiments, J. Climate, 29, 1511-1527, doi:10.1175/JCLI-D-15-0182.1.   DOI
5 Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
6 Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Clim. Dynam., 40, 245-272, doi:10.1007/s00382-012-1481-2.   DOI
7 Gupta, A. S., L. C. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2012: Climate Drift in the CMIP3 Models. J. Climate, 25, 4621-4640, doi:10.1175/JCLI-D-11-00312.1.   DOI
8 Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813-829.   DOI
9 Ham, H., S.-M. Lee, Y.-K. Hyun, and H.-S. Kang, 2017a: Improvement Status of Current Operation Seasonal Forecast System and Verification in 2016, NIMR Numerical model development division Technical report, G901:A-0008885252, 74 pp.
10 Ham, H., D. Won, and Y.-S. Lee, 2017b: Performance Assessment of Weekly Ensemble Prediction Data at Seasonal Forecast System with High Resolution. Atmosphere, 27, 261-276 (in Korean with English abstract).   DOI
11 Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dynam., 31, 647-664.   DOI
12 Jeong, Y. Y., I.-J. Moon, and P.-H. Chang, 2016: Accuracy of short-term ocean prediction and the effect of atmosphere-ocean coupling on KMA Global Seasonal Forecast System (GloSea5) during the development of ocean stratification. Atmosphere, 26, 599-615, doi:10.14191/Atmos.2016.26.4.599 (in Korean with English abstract).   DOI
13 Jung, M. I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337, doi:10.14191/Atmos.2015.25.2.323 (in Korean with English abstract).   DOI
14 Jung, M. I., S.-W. Son, Y. Lim, K. Song, D. J. Won, and H.-S. Kang, 2016: Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment. Atmosphere, 26, 203-214, doi:10.14191/Atmos.2016.26.1.203 (in Korean with English abstract).   DOI
15 Lue, J. J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean-atmosphere model. J. Climate, 21, 84-93.   DOI
16 Kang, H.-S., K.-O. Boo, and C. Cho, 2011: Introduction to KMA-Met office joint seasonal forecasting system and evaluation of its hindcast ensemble simulations. Science and Technology Infusion Climate Bulletin, 36th NOAA Annual Climate Diagnostics and Prediction Workshop, NOAA's National Weather Service, 78-82.
17 Lee, K.-J., and M. Kwon, 2016: A prediction of precipitation over east asia for june using simultaneous and lagged teleconnection. Atmosphere, 26, 711-716, doi:10.14191/Atmos.2016.26.4.711 (in Korean with English abstract).   DOI
18 Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.   DOI
19 MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5 (Glosea5): a high-resolution seasonal forecast system. Q. J. Roy. Meteor. Soc., 141, 1072-1084, doi:10.1002/qj.2396.   DOI
20 McKinnon, K. A., and C., Deser, 2018: Internal variability and regional climate trends in an observational large ensemble. J. Climate, 31, 6783-6802, doi:10.1175/JCLI-D-17-0901.1.   DOI
21 Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D., Calvert, T., Graham, P., Hyder, J., Siddorn, and B., Sinha, 2014: GO5.0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092.   DOI
22 Poveda, G., A. Jaramillo, M. M. Gil, N. Quiceno, and R. I. Mantilla, 2001: Seasonally in ENSO-related precipitation, river discharges soil moisture, and vegetation index in Colombia. Water Resour. Res., 37, 2169-2178.   DOI
23 Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate and Atmospheric Science, 28, 1-8, doi:10.1038/s41612-018-0038-4.   DOI
24 Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd-8-2221-2015.   DOI
25 Rodo, X., E. Baert, and F. A. Comin, 1997: Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Nino-Southern Oscillation. Climate Dyn., 13, 275-284.   DOI
26 Ryu, Y., J.-Y. Shin, W. Nam, and J.-H. Heo, 2012: Forecast of the Daily Inflow with Artificial neural Network using Wavelet Transform at Chungju Dam. J. Korea Water Resources Association, 45, 1321-1330 (in Korean with English abstract).   DOI
27 Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514-2519, doi:10.1002/2014GL059637.   DOI
28 Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190-1206, doi:10.1175/2010MWR3430.1.   DOI
29 Walters, D., N. Wood, S. Vosper, and S. Milton, 2014: ENDGame: A new dynamical core for seamless atmospheric prediction, Met Office Technical report, 27 pp.
30 Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520.   DOI
31 Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-8-1509-2015.   DOI
32 Walters, D. N., and Coauthors, 2011: The Met Office Unified model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.   DOI
33 Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-117.   DOI