• Title/Summary/Keyword: GloSea

Search Result 59, Processing Time 0.023 seconds

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia (대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성)

  • Hyunggyu Song;Daeok Youn;Johan Lee;Beomcheol Shin
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.19-36
    • /
    • 2024
  • The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.

Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast (기후예측시스템(GloSea5) 열대성저기압 계절예측 특성)

  • Lee, Sang-Min;Lee, Jo-Han;Ko, A-Reum;Hyun, Yu-Kyung;Kim, YoonJae
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.209-220
    • /
    • 2020
  • Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.

The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements (기상청 기후예측시스템(GloSea6) - Part 1: 운영 체계 및 개선 사항)

  • Kim, Hyeri;Lee, Johan;Hyun, Yu-Kyung;Hwang, Seung-On
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.341-359
    • /
    • 2021
  • This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and technical aspects of all the GloSea6 components - atmosphere, land, ocean, and sea-ice models. Also, the operational architectures of GloSea6 installed on the new KMA supercomputer are presented. It includes (1) pre-processes for atmospheric and ocean initial conditions with the quasi-real-time land surface initialization system, (2) the configurations for model runs to produce sets of forecasts and hindcasts, (3) the ensemble statistical prediction system, and (4) the verification system. The changes of operational frameworks and computing systems are also reported, including Rose/Cylc - a new framework equipped with suite configurations and workflows for operationally managing and running Glosea6. In addition, we conduct the first-ever run with GloSea6 and evaluate the potential of GloSea6 compared to GloSea5 in terms of verification against reanalysis and observations, using a one-month case of June 2020. The GloSea6 yields improvements in model performance for some variables in some regions; for example, the root mean squared error of 500 hPa geopotential height over the tropics is reduced by about 52%. These experimental results show that GloSea6 is a promising system for improved seasonal forecasts.

A Study of the Application of Machine Learning Methods in the Low-GloSea6 Weather Prediction Solution (Low-GloSea6 기상 예측 소프트웨어의 머신러닝 기법 적용 연구)

  • Hye-Sung Park;Ye-Rin, Cho;Dae-Yeong Shin;Eun-Ok Yun;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.307-314
    • /
    • 2023
  • As supercomputing and hardware technology advances, climate prediction models are improving. The Korean Meteorological Administration adopted GloSea5 from the UK Met Office and now operates an updated GloSea6 tailored to Korean weather. Universities and research institutions use Low-GloSea6 on smaller servers, improving accessibility and research efficiency. In this paper, profiling Low-GloSea6 on smaller servers identified the tri_sor_dp_dp subroutine in the tri_sor.F90 atmospheric model as a CPU-intensive hotspot. Applying linear regression, a type of machine learning, to this function showed promise. After removing outliers, the linear regression model achieved an RMSE of 2.7665e-08 and an MAE of 1.4958e-08, outperforming Lasso and ElasticNet regression methods. This suggests the potential for machine learning in optimizing identified hotspots during Low-GloSea6 execution.

The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2) (기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성)

  • Sang-Min Lee;Yu-Kyung Hyun;Beomcheol Shin;Heesook Ji;Johan Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

Data processing system and spatial-temporal reproducibility assessment of GloSea5 model (GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가)

  • Moon, Soojin;Han, Soohee;Choi, Kwangsoon;Song, Junghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.761-771
    • /
    • 2016
  • The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA (기상청 기후예측시스템 개선에 따른 월별 앙상블 예측자료 성능평가)

  • Ham, Hyunjun;Lee, Sang-Min;Hyun, Yu-Kyug;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.149-164
    • /
    • 2019
  • The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.

A Survey of Weather Forecasting Software and Installation of Low Resolution of the GloSea6 Software (기상예측시스템 소프트웨어 조사 및 GloSea6 소프트웨어 저해상도 설치방법 구현)

  • Chung, Sung-Wook;Lee, Chang-Hyun;Jeong, Dong-Min;Yeom, Gi-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.349-361
    • /
    • 2021
  • With the development of technology and the advancement of weather forecasting models and prediction methods, higher performance weather forecasting software has been developed, and more precise and accurate weather forecasting is possible by performing software using supercomputers. In this paper, the weather forecast model used by six major countries is investigated and its characteristics are analyzed, and the Korea Meteorological Administration currently uses it in collaboration with the UK Meteorological Administration since 2012 and explains the GloSea However, the existing GloSea was conducted only on the Meteorological Administration supercomputer, making it difficult for various researchers to perform detailed research by specialized field. Therefore, this paper aims to establish a standard experimental environment in which the low-resolution version based on GloSea6 currently used in Korea can be used in local systems and test it to present the localization of low-resolution GloSea6 that can be performed in the laboratory environment. In other words, in this paper, the local portability of low-resolution Globe6 is verified by establishing a basic architecture consisting of a user terminal-calculation server-repository server and performing execution tests of the software.

An enhancement of GloSea5 ensemble weather forecast based on ANFIS (ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1031-1041
    • /
    • 2018
  • ANFIS-based methodology for improving GloSea5 ensemble weather forecast is developed and evaluated in this study. The proposed method consists of two steps: pre & post processing. For ensemble prediction of GloSea5, weights are assigned to the ensemble members based on Optimal Weighting Method (OWM) in the pre-processing. Then, the bias of the results of pre-processed is corrected based on Model Output Statistics (MOS) method in the post-processing. The watershed of the Chungju multi-purpose dam in South Korea is selected as a study area. The results of evaluation indicated that the pre-processing step (CASE1), the post-processing step (CASE2), pre & post processing step (CASE3) results were significantly improved than the original GloSea5 bias correction (BC_GS5). Correction performance is better the order of CASE3, CASE1, CASE2. Also, the accuracy of pre-processing was improved during the season with high variability of precipitation. The post-processing step reduced the error that could not be smoothed by pre-processing step. It could be concluded that this methodology improved the ability of GloSea5 ensemble weather forecast by using ANFIS, especially, for the summer season with high variability of precipitation when applied both pre- and post-processing steps.