• Title/Summary/Keyword: Glass industries

Search Result 126, Processing Time 0.033 seconds

Development of a Thin Glass Vibration Measuring System for Productivity Improvement of LCD Manufacturing Line (LCD 생산라인의 생산성 향상을 위한 초박형 유리진동 계측 시스템의 개발)

  • Oh, Young-Kyo;Lee, Jung-Uk;Sun, Ju-Young;Kwack, Jeong-Seok;Won, Moon-Cheol;Lee, Hyun-Yup
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.336-342
    • /
    • 2011
  • Recently, the LCD manufacturing industries try to maximize the productivity of LCD panels due to sharp increase in the market need of LCD display. Usually, the increase in manufacturing speed induces additional vibration of glasses and manufacturing machineries. This kind of vibration can induce bad effects on the manufacturing accuracy, and even can damage the glasses. The vibration signal of glass itself is very useful to predict the allowable maximum level of manufacturing speed. Therefore, it is necessary to measure the vibration of the glass itself and a very thin vibration measurement system attachable on the glass is needed. Since in some processes the glasses need to go through very thin gaps such as 2.5mm, We develop a glass vibration measurement system with the thickness of 1.3mm. The system measures the glass vibration using MEMS type accelerometers and store vibration data in a Nand-Flash memory. The performance of the develop system has been verified on a real LCD manufacturing line and the accuracy of vibration measurement is comparable with that of an accurate commercial vibration measurement system.

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.

Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction (멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가)

  • Jeong, Yeon-Jae;Kim, Jeong-Dae;Hwang, Byeong-Kwan;Kim, Hee-Tae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

A Study on Standardization of Fracture Strength of Secondary Barrier of FSB in MARK-III LNG CCS using Weibull Distribution (Weibull 통계분석을 이용한 MARK-III LNG CCS의 2차 방벽 FSB 파단강도 표준화 연구)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.137-143
    • /
    • 2021
  • In this study, the fracture strength of Flexible Secondary Barrier (FSB) composites was standardized by conducting a distribution analysis of the fracture probability, considering that the fracture strength of FSB composites such as glass fiber reinforced composites is relatively large. As the mechanical performance of FSB composites varies with the fiber direction, 20 replicate uniaxial tensile tests were performed for different temperatures ranging from the ambient to cryogenic conditions, considering the actual operating environment of liquefied natural gas. For the probability statistical analysis, the Weibull distribution analysis derived from the weakest link theory was used, considering the large variance in the fracture strength and brittle fracture behavior. The results of the Weibull distribution analysis were used to calculate the standard fracture strength of the FSB composites for different fiber directions. The findings can help ensure the reliability of the FSB mechanical properties in different fiber directions in the design of the secondary barrier and structural analyses.

A Study of Mechanical Characteristics at Room/Cryogenic Temperature of Powder Insulation Materials Applied to Type C Fuel Tank (Type C 연료탱크에 적용되는 분말형 단열 소재의 상온/극저온 기계적 특성에 관한 연구)

  • Kim, Tae-Wook;Oh, Jae-Won;Seo, Young-Kyun;Han, Seong-Jong;Lee, Jae-Myung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.787-793
    • /
    • 2021
  • The global demand for Liquefied Natural Gas(LNG) continues to increase and is facing a big cycle. To keep pace with the increase in international demand for LNG, the demand for LNG fueled ships is also increasing. Since LNG fuel tanks are operated in a cryogenic environment, insulation technology is very important, and although there are various types of insulation applied to Type C tanks, multi-layer insulation and vacuum insulation are typically applied. Powder insulation materials are widely used for storage and transportation of cryogenic liquids in tanks with such a complex insulation structure. In this study, compression tests at room and cryogenic temperature were performed on closed perlite, glass bubble, and fumed silica, which are representative powder insulation material candidates. Finally, the applicability to the Type C fuel tank was reviewed by analyzing the experimental results of this study.

Development of Air-floating Conveyor System for FPD (FPD용 공기부상 이송컨베이어 시스템 개발)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The CRT(Cathode Ray Tube) displays have been substituted for FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) because they have a convex surface, large volume and heavy weight. The productivity of FPDs is greatly dependent on the area of thin glass panel with $0.6{\sim}0.8mm$ thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass Panel. Through FEM(Finite Element Method) analysis and fluid analysis, we developed an non-contact and air-floating conveyor system which consists of transport-module, distributor, horizontal/vertical changer and controller for the 7th generation glass panel (2,200mm in width, 1,870mm in length and 0.7mm in thickness). The design technology developed in this study can be effectively applied to a conveyor system for a larger-scaled thin glass panel.

Comparison of NIOSH Method 7400 A and B Counting Rules for Airborne Man-Made Vitreous Fibers (인조광물섬유에 대한 NIOSH 7400 방법의 A 및 B 계수규칙비교)

  • Sin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • There are many counting rules for analyzing man-made mineral fibers. The representatives are the NIOSH Method 7400 A and B counting rules. The two rules have different rules of length-to-width ratio(aspect ratio) and diameter. The A rule counts only fibers $>5{\mu}m$ in length, and only fibers with aspect ratio >3:1. The B rule counts only ends of fibers $>5{\mu}m$ in length and $<3{\mu}m$ in diameter, and only fibers with aspect ratio ${\geq}5:1$. The A counting rule had been used before the B counting rule was introduced. The purpose of this study is to compare the A and B counting rules for airborne fibers from various man-made mineral fibers(glass wool fibers, rock wool fibers, refractory ceramic fibers, and continuous filament glass fibers) industries. There were significantly differences between the paired counts of A and B rules in all types of fibers(p<0.05). A rule counts/B rule counts(A/B ratios) were 1.52 for glass fibers, 1.53 for rock wool fibers, 1.19 for RCF, and 1.82 for continuous filament glass fibers. The counting results by A and B counting rules were highly correlated in glass wool fibers, rock wool fibers and refractory ceramic fibers(RCF) samples (r=0.96 for all types of fibers) except continuous filament glass fibers(r=0.82). Regression equations to correct for the differences between counting rules were presented in this paper.

A Stability Study of Rider Arch under the Increased Load of Checker Brick in Regernerator of the Reformed Glass Melting Furnace (유리 용해로 축열실 상재 하중 증가에 따른 Rider Arch의 안전성 검토)

  • Lee, Sun-Yung;Kim, Jong-Ock;Lim, Dae-Young;Kim, Taik-Nam;Park, Won-Kya
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The regenerator is important part of the glass melting furnace to increase the temperature of the intake air through the combustion flame. The insulation, checker brick, prevention of the air leak has been studied to decrease the fuel consumption in glass melting industries. Thus the new types of checker brick and the design of the rider arch has been studied to prolong the life of the glass melting furnace. The height of the regenerator increased from 5.64 m to 7.89 m in the reforming of the glass melting furnace. Thus the stability of the rider arch is studied under the condition of increased load of checker brick in this research. The rider arch was estimated to be stable inspite of the increase of load according to the calculation. The max. sustained compressive stress of the rider arch is 163 kg/$cm^2$ and the max. sustained shear stress is 6.37 kg/$cm^2$.

  • PDF

Biocontrol of Biofilm-forming Bacillus cereus by Using Organic Acid, Ethanol, and Sodium Chloride (생물막 형성 Bacillus cereus에 대한 유기산, 에탄올 및 NaCl의 제어효과)

  • Lee, Young-Duck;Yoo, Hye-Lim;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.120-125
    • /
    • 2013
  • Food poisoning by Bacillus cereus is one of the common food-borne diseases and B. cereus is widely distributed in natural and commercial products owing to the strong resistance caused by biofilm or spore. The ethanol, NaCl, and organic acids of acetic acid, citric acid, and lactic acid for biocontrol of biofilm-forming B. cereus on glass wool were investigated. The biofilm on glass wool was observed in many developments after 48 h incubation. As the results of reduction of biofilm-forming B. cereus by sanitizers, reduction levels of each organic acid treatment ranged to 5-6 log CFU/g-glass wool. In case of combination treatments of 20% ethanol, 10% NaCl, and 1% of each organic acid for 1-5 min, the reduction level of biofilm-forming B. cereus was 7-8 log CFU/g-glass wool. Therefore, combination treatments of ethanol, NaCl, and an organic acid might effectively reduce biofilm-forming B. cereus in various food processes and industries.

Glass ceiling in arts and culture professionals: Between J and R industries (문화예술분야 전문인력에 대한 유리천장효과 분석: J산업과 R산업 중심으로)

  • Chan, Jong-Sub;Heo, Shik
    • Review of Culture and Economy
    • /
    • v.21 no.2
    • /
    • pp.3-28
    • /
    • 2018
  • This study focuses on analyzing the glass ceiling effect in arts and culture professionals through the quintile decomposition applied to the RIF unconditional quantile regression and Oaxaca-Blinder decomposition technique. From the industrial viewpoint, we divide arts and culture professionals into cultural contents professionals(large category J industry) and arts professionals(large category R industry). For our analysis, we employ the pooling data of 'Wage Structure Survey' from 2009 to 2016. Our results are summarized as follows. First, as OLS wage decomposition showed that the gender wage gap among the arts professionals was lower than cultural contents professionals, but the discrimination portion of total gender wage gap was larger. Second, from quintile regression decompositions, the glass ceiling effects of two types of professionals showed different results. Cultural contents sector was observed with the "steady glass ceiling effect" as the portion of the discrimination was continuously increased, while the arts sector was observed with the "limited glass ceiling effect" as the discrimination had drastically increased in the 80s and 90s.