Browse > Article
http://dx.doi.org/10.9721/KJFST.2013.45.1.120

Biocontrol of Biofilm-forming Bacillus cereus by Using Organic Acid, Ethanol, and Sodium Chloride  

Lee, Young-Duck (Department of Food Science and Biotechnology, Gachon University)
Yoo, Hye-Lim (Department of Food Science and Biotechnology, Gachon University)
Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
Publication Information
Korean Journal of Food Science and Technology / v.45, no.1, 2013 , pp. 120-125 More about this Journal
Abstract
Food poisoning by Bacillus cereus is one of the common food-borne diseases and B. cereus is widely distributed in natural and commercial products owing to the strong resistance caused by biofilm or spore. The ethanol, NaCl, and organic acids of acetic acid, citric acid, and lactic acid for biocontrol of biofilm-forming B. cereus on glass wool were investigated. The biofilm on glass wool was observed in many developments after 48 h incubation. As the results of reduction of biofilm-forming B. cereus by sanitizers, reduction levels of each organic acid treatment ranged to 5-6 log CFU/g-glass wool. In case of combination treatments of 20% ethanol, 10% NaCl, and 1% of each organic acid for 1-5 min, the reduction level of biofilm-forming B. cereus was 7-8 log CFU/g-glass wool. Therefore, combination treatments of ethanol, NaCl, and an organic acid might effectively reduce biofilm-forming B. cereus in various food processes and industries.
Keywords
biofilm; Bacillus cereus; ethanol; NaCl; organic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 van der Waal SV, Jiang LM, de Soet JJ, van der Sluis LW, Wesselink PR, Crielaard W. Sodium chloride and potassium sorbate: A synergistic combination against Enterococcus faecalis biofilms: An in vitro study. Eur. J. Oral Sci. 120: 452-457 (2012)   DOI   ScienceOn
2 Lim Y, Jana M, Luong TT, Lee CY. Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J. Bacteriol. 186: 722-729 (2004)   DOI
3 Arias-Moliz MT, Baca P, Ordez-Becerra S, Gonzlez-Rodrguez MP, Ferrer-Luque CM. Eradication of enterococci biofilms by lactic acid alone and combined with chlorhexidine and cetrimide. Med. Oral Patol. Oral Cir. Bucal. 1: e902-e906 (2012)
4 Hansson C, Faergemann J. The effect of antiseptic solutions on microorganisms in venous leg ulcers. Acta Derm.-Venereol. 75: 31-33 (1995)
5 Akiyama H, Yamasaki O, Tada J, Arata J. Effects of acetic acid on biofilms formed by Staphylococcus aureus. Arch. Dermatol. Res. 291: 570-573 (1999)   DOI
6 Tsai YP, Pai TY, Hsin JY, Wan TJ. Biofilm bacteria inactivation by citric acid and resuspension evaluations for drinking water production systems. Water Sci. Technol. 48: 463-472 (2003)
7 Barbosa-Canovas GV, Pothakamury UR, Palou E, Swanson BG. Nonthermal Preservation of Foods. Marcel Dekker, New York, NY, USA. p. 276 (1998)
8 Granum PE. Bacillus cereus and its toxins. J. Appl. Microbiol. 76: 61S-66S (1994)   DOI
9 Wijman JG, De Leeuw PP, Moezelaar R, Zwietering MH, Abee T. Air-liquid interface biofilms of Bacillus cereus: Formation, sporulation, and dispersion. Appl. Environ. Microb. 73: 1481- 1488 (2007)   DOI   ScienceOn
10 Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435-664 (1987)   DOI   ScienceOn
11 Nickel JC, Costerton JW, McLean RJ, Olson M. Bacterial biofilms: Influence on the pathogenesis, diagnosis, and treatment of urinary tract infections. J. Antimicrob. Chemoth. 33: 31-41 (1994)   DOI   ScienceOn
12 Srinivasan R, Stewart PS, Griebe T, Chen CI, Xu X. Biofilm parameters influencing biocide efficacy. Biotechnol. Bioeng. 20: 553-560 (1995)
13 Abushelaibi AA, Al Shamsi MS, Afifi HS. Use of antimicrobial agents in food processing systems. Recent Pat. Food Nutr. Agric. 1: 2-7 (2012)
14 Ban GH, Park SH, Kim SO, Ryu S, Kang DH. Synergistic effect of steam and lactic acid against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel. Int. J. Food Microbiol. 157: 218-223 (2012)   DOI   ScienceOn
15 Musk DJ, Hergenrother PJ. Chemical countermeasures for the control of bacterial biofilms: effective compounds and promising targets. Curr. Med. Chem. 13: 2163-77 (2006)   DOI   ScienceOn
16 Meyer B. Approaches to prevention, removal, and killing of biofilms. Int. Biodeter. Biodegr. 51: 249-253 (2003)   DOI   ScienceOn
17 Gibson H, Taylor JH, Hall KE, Holah JT. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 87: 41-48 (1999)   DOI   ScienceOn
18 Sutherland IW, Hughes KA, Skillman LC, Tait K. The interaction of phage and biofilms. FEMS Microbiol. Lett. 12: 1-6 (2004)
19 Leistner L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55: 181-186 (2000)   DOI   ScienceOn
20 Oosthuizen MC, Steyn B, Lindsay D, Brzel VS, von Holy A. Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol. Lett. 1: 47-51 (2001)
21 Karunakaran E, Biggs CA. Mechanisms of Bacillus cereus biofilm formation: An investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl. Microbiol. Biot. 89: 1161-1175 (2011)   DOI
22 Djordjevic D, Wiedmann M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microb. 68: 2950-2958 (2002)   DOI   ScienceOn
23 Sauer K, Camper AK. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183: 6579-6589 (2001)   DOI   ScienceOn
24 Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J. Biosci. Bioeng. 106: 381-386 (2008)   DOI   ScienceOn
25 Williams DL, Costerton JW. Using biofilms as initial inocula in animal models of biofilm-related infections. J. Biomed. Mater. Res. B 100: 1163-1169 (2012)
26 Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Meth. 83: 89-105 (2010)   DOI   ScienceOn
27 Jung DH. Control of Food-borne Microorganism. Daekwang Book, Seoul, Korea. pp. 296-304 (2001)
28 Balestrino D, Souweine B, Charbonnel N, Lautrette A, Aumeran C, Traor O, Forestier C. Eradication of microorganisms embedded in biofilm by an ethanol-based catheter lock solution. Nephrol. Dial. Transpl. 24: 3204-3209 (2009)   DOI   ScienceOn
29 Presterl E, Suchomel M, Eder M, Reichmann S, Lassnigg A, Graninger W, Rotter M. Effects of alcohols, povidone-iodine, and hydrogen peroxide on biofilms of Staphylococcus epidermidis. J. Antimicrob. Chemoth. 60: 417-420 (2007)   DOI   ScienceOn
30 Nett JE, Guite KM, Ringeisen A, Holoyda KA, Andes DR. Reduced biocide susceptibility in Candida albicans biofilms. Antimicrob. Agents Chemoth. 52: 3411-3413 (2008)   DOI   ScienceOn
31 Wijnker JJ, Koop G, Lipman LJ. Antimicrobial properties of salt (NaCl) used for the preservation of natural casings. Food Microbiol. 23: 657-662 (2006)   DOI   ScienceOn
32 Xu H, Zou Y, Lee HY, Ahn J. Effect of NaCl on the biofilm formation by foodborne pathogens. J. Food Sci. 75: M580-M585 (2010)   DOI   ScienceOn