• Title/Summary/Keyword: Glass dielectric layer

Search Result 101, Processing Time 0.044 seconds

Analysis of Planar Metal Plasmon Waveguides

  • Jung, Jae-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Propagation modes of symmetric metal-insulator-metal SPP waveguides are analyzed. Main characteristics of these waveguides such as mode effective index, propagation length, and penetration depths are calculated at the telecom wavelength for different layer thickness. We adopt Au, Al as a metal material and air, glass as a dielectric material and obtain different optical characteristics. The surface plasmon characteristics in this paper provide a numerical insight for designing nanostructure metal plasmon waveguide.

Development of Dry Films of Lead-free Transparent Dielectrics for PDP (PDP용 무연 투명유전체의 Dry Film 개발)

  • Lee Ji-Hun;Bang Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.497-501
    • /
    • 2005
  • Dry film method was applied to fabricate lead-free transparent dielectric fur PDP(Plasma Display Panel). From various slurry compositions, it was able to find out the. best composition for producing high density green sheet. The slurry exhibited shear thinning characteristics which are known to be suitable fur producing a high quality green sheet. The thermal expansion coefficient of the fabricated transparent dielectric was measured to be $97{\times}10^{-7}/^{\circ}C$ which is close to the value of the glass substrate(PD-200). Cross sectional SEM of the transparent dielectric layer on PD-200 showed that the two layers were well attached each other with no observable gaps between them.

  • PDF

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

The Study on Pattern Dependent Modeling of ILD CMP (패턴에 따른 층간절연막 CMP의 모델리에 관한 연구)

  • 홍기식;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1121-1124
    • /
    • 2001
  • In this study, we verify th effects of pattern density on interlayer dielectric chemical mechanical polishing process based on the analysis of Preston's equation and confirm this analysis by several experiments. Appropriate modeling equation, transformed form Preston's equations used in glass polishing, will be suggested and described the effects of this modeling during pattern wafer ILD CMP. Results indicate that the modeling is well agreed to middle density structure of the die in pattern wafer, but has some error in low and high density structure of the die. Actually, the die used in Fab, was designed to have a appropriate density, therefore this modeling will be suitable for estimating the results of ILD CMP.

  • PDF

Microcrystalline Silicon Film Growth on a Fluoride Film Coated Glass Substrate

  • Kim, Do-Young;Park, Joong-Hyun;Ahn, Byung-Jae;Yoo, Jin-Su;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.526-529
    • /
    • 2002
  • Various fluoride films on a glass substrate were prepared and characterized in order to determine the best seed layer for a microcrystalline silicon (${\mu}c$-Si) film growth. Among the various group-IIA-fluoride systems, the $CaF_2$films on glass substrates illustrated (220) preferential orientation and a lattice mismatch of less than 0.7% with Si. $CaF_2$ films exhibited a dielectric constant between $4.1{\sim}5.2$ and an interface trap density ($D_{it}$ as low as $1.8{\times}10^{11}\;cm^{-2}eV^1$. Using the $CaF_2$/glass structure, we were able to achieve an improved ${\mu}c$-Si film at a process temperature of 300 $^{\circ}C$. We have achieved the ${\mu}c$-Si films with a crystalline volume fraction of 65%, a grain size of 700 ${\AA}$, and an activation energy of 0.49 eV.

  • PDF

Development of Ultra-high Capacitance MLCC through Low Temperature Sintering (저온소결을 통한 초고용량 MLCC 개발)

  • Sohn, Sung-Bum;Kim, Hyo-Sub;Song, Soon-Mo;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.146-154
    • /
    • 2009
  • It is necessary to minimize the thickness of Ni inner electrode layer and to improve the coverage of inner electrode, for the purpose of developing the ultra high-capacity multi layered ceramic capacitor (MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the relationship between dielectric properties of MLCC and batch condition such as mixing and milling methods was investigated in the $BaTiO_3$(BT)-Dy-Mg-Ba system with borosilicate glass as a sintering agent. In addition, several chip properties of MLCC manufactured by low temperature sintering were compared with conventionally manufactured MLCC. It was found that low temperature sintered MLCC showed better DC-bias property and lower aging rate. It was also confirmed that the thickness of Ni inner electrode layer became thinner and the coverage of inner electrode was improved through low temperature sintering.

High Frequency (MHz) LLC Resonant Converter for a Capacitor Coupling Wireless Power Transfer (CCWPT) (커패시터 커플링 무선 전력 전송을 위한 MHz LLC 공진형 컨버터)

  • You, Young-Soo;Moon, HyunWon;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2016
  • This paper proposes a high-frequency (MHz) LLC resonant converter for a capacitor coupling wireless power transfer (CCWPT). The CCWPT uses electric field in the coupling capacitor between the transmitter and receiver electrodes with a dielectric layer. Given that capacitance is very small and the impedance is large, transferring power with a simple series resonance is difficult. Therefore, the high frequency (MHz) and high Q factor LLC converter is proposed to reduce the impedance of the coupling capacitance and to obtain a high output voltage. This paper deals with the operation analysis of the proposed LLC converter and a theoretical capacitance estimation. The operation and features of the proposed CCWPT LLC converter is verified with a 4.2 W prototype for charging mobile devices.

Characterization for Viscoelasticity of Glass Fiber Reinforced Epoxy Composite and Application to Thermal Warpage Analysis in Printed Circuit Board (유리섬유강화 복합재의 점탄성 특성 규명 및 인쇄회로기판 열변형해석에의 적용)

  • Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.245-253
    • /
    • 2010
  • The reliability problems of flip chip packages subjected to temperature change during the packaging process mainly occur due to mismatches in the coefficients of thermal expansion as well as features with time-dependent material properties. Resin molding compounds like glass fiber reinforced epoxy composites used as the dielectric layer in printed circuit boards (PCB) strongly exhibit viscoelastic behavior, which causes their Young's moduli to not only be temperature-dependent but also time-dependent. In this study, the stress relaxation and creep tests were used to characterize the viscoelastic properties of the glass fiber reinforced epoxy composite. Using the viscoelastic properties, finite element analysis (FEA) was employed to simulate thermal loading in the pre-baking process and predict thermal warpage. Furthermore, the effect of viscoelastic features for the major polymeric material on the dielectric layer in the PCB (the glass fiber reinforced epoxy composite) was investigated using FEA.

Characteristics of Carbon Nanotube with Synthetic Conditions in Catalytic Chemical Vapor Deposition (촉매 화학 기상 증착법의 제조 조건에 따른 탄소 나노튜브의 특성)

  • Kim, Hyeon-Jin;Lee, Im-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.458-463
    • /
    • 2002
  • Carbon nanotubes were synthesized at various conditions using Ni-catalytic thermal chemical vapor deposition method and their characteristic properties were investigated by SEM, TEM and Raman spectroscopy. Carbon nanotubes were formed on very fine Ni-catalytic particles. The carbon nanotubes synthesized by thermal decomposition of acetylene at $700^{\circ}C$ had a coiled shape, while those synthesized at $850^{\circ}C$ showed a curved and Y-shape having a bamboo-like morphology. It was found that the carbon nanotube was also made on the fine Ni-catalytic particles formed on the surface of 100~400nm sized large ones after pretreatment with $NH_3$.ber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

Pinhole Phenomena in the External Electrode Fluorescent Lamps (외부전극 헝광램프의 핀홀 현상)

  • Gill, Doh-H.;Kim, Sang-B.;Song, Hyuk-S.;Yu, Dong-G.;Lee, Sang-H.;Pak, Min-Sun;Kang, June-Gill;Cho, Guang-Sup;Cho, Mee-R.;Hwang, Myung-G.;Kim, Young-Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.266-272
    • /
    • 2006
  • Application of power higher than the optimum operation value to an external electrode fluorescent lamps(EEFL) leads to the formation of small holes, called pinholes, which subsequently leads to lamp failure. The pinholes come from the insulating breakdown of the capacitor which is the dielectric layer between an external electrode and glass tube. The power of insulation breakdown is proportional to the electric power applied to the lamp. When a lamp current is low in the glass tube of dielectric constant K, the dielectric field strength of pinholes is about 3K kV/mm. The field strength of insulation breakdown decreases as the lamp current increases.