• Title/Summary/Keyword: Glass Transition

Search Result 1,071, Processing Time 0.03 seconds

A study on the improvement of thermostability and dielectric breakdown strength for packaging and impregnating epoxy composite materials for electrical machines and apparatus (전기 기기용 봉지 및 함침 에폭시 복합 재료의 내열성 및 절연파괴 특성 개선에 관한 연구)

  • 김명호;김재환
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.527-533
    • /
    • 1994
  • In this study, it was studied on dielectric breakdown strength and thennostability properties due to the structure variation of matrix resin and treatment of coupling agent of epoxy insulating materials. The interpenetrating network structure was formed by simultaneous heating curing the epoxy resin with single network structure and the methacrylic acid resin. Also inner structure was observed and the glass transition temperature was measured on these three type specimens. Dielectric breakdown properties were investigated by applying DC, AC and impulse voltage. As a result, the glass transition temperature and the dielectric breakdown strength of specimen with interpenetrating network structure was more higher than another two type specimens.

  • PDF

Physical and Chemical Properties of Silk Fiber Treated with Calcium Nitrate (질산칼슘 처리농도에 따른 수축견사의 이화학적 특성)

  • 이광길;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.70-77
    • /
    • 1998
  • This study was carried out in order to find out the relationship between physical and chemical properties of silk fiber treated by concentrated calcium nitrate solution. The tensile, thermal and dynamic mechanical properties are also examined on Ca(NO3)2 treated silk fibers. The tensile properties of silk fibers treated by calcium nitrate changed with a concentration. The thermal behavior were also affected by the concentration of calcium nitrate. The degradation temperature (endotherms) and glass transition temperature shifted to lower temperature as the treated concentration increased. It is thought that the physical properties are strongly related to the structure and morphology of Ca(NO3)2 treated silk fibers. As a result, these give property changes with a concentration dependence.

  • PDF

Microlens Micro V-groove Fabrication by the Modified LIGA Process (변형 DEEP X-ray를 이용한 마이크로 렌즈 및 V-groove 제작)

  • 이정아;이승섭;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2004
  • Mircolens and microlens V-groove are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment and inclined deep X-ray lithography, respectively. The fabrication technology is very simple and produces microlenses and microlens V-groove with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. Microlenses were produced with diameters ranging from 30 to $1500\mu\textrm{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area. The size of the micro V-groove is fabricated in the range of 12~$60\mu\textrm{m}$.

Thermal Analysis of Mica/Epoxy Composites used In Generator Stator Windings (발전기 고정자 권선에서 사용되는 마이카/에폭시의 열적 분석)

  • 김희동;김태완;김정훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.330-333
    • /
    • 1997
  • The thermal impact of mica/epoxy paper(130${\mu}{\textrm}{m}$) is investigated using XRD, DSC and TGL X-ray diffraction(XRD) analysis was performed to know the position and structure of mica crystal in insulation materials. A differential scanning calorimeter(DSC) was used to measure glass transition temperature and excess enthalphy of the composite materials that had been subjected to thermal aging. The glass transition temperature(T$_{g}$) measured by DSC is observed at 95.43$^{\circ}C$ and 113.43$^{\circ}C$, respectively. The T$_{g}$ also increases with increased aging time. Measurements performed by TGA(thermogravimetric analysis) have showed that weight loss profile of sound specimens are lower than those aged.ged.

  • PDF

Thickness Dependence of the Glass Transition Temperature in Thin Polymer Films

  • Lee, Jeong-Kyu;Zin, Wang-Cheol
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.201-201
    • /
    • 2006
  • In this study the glass transition temperature in thin polymer films has been studied. Ellipsometry has been used to measure $T_{g}$ of thin film as a function of film thickness. Empirical equation has been proposed to fit the measured $T_{g}$ pattern with thickness. Also, a continuous multilayer model was proposed and derived to describe the effect of surface on the observed $T_{g}$ reduction in thin films, and the depth-dependent $T_{g}$ profile was obtained. These results showed that $T_{g}$ at the top surface was much lower than the bulk $T_{g}$ and gradually approached the bulk $T_{g}$ with increasing distance from the edge of the film. The model and equation were modified to apply for the polymer coated on the strongly favorable substrate and the freely standing film.

  • PDF

Preparation and Nonlinear Optical Properties of Novel Polyesters with Enhanced Thermal Stability of Second Harmonic Generation

  • Kim, Jin-Hyang;Won, Dong-Seon;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.181-186
    • /
    • 2008
  • 2,5-Di-(2'-hydroxyethoxy)-4'-nitrostilbene (3) was prepared and polycondensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel T-type polyesters (4-6) containing the NLO-chromophores dioxynitrostilbenyl groups, which constituted parts of the polymer backbones. Polymers 4-6 are soluble in common organic solvents such as acetone and N,N-dimethylformamide. They showed thermal stability up to 260 oC in thermogravimetric analysis with glass-transition temperatures obtained from differential scanning calorimetry in the range 90-95 oC. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 1.42 ´ 10-9 esu. The dipole alignment exhibited high thermal stability up to 5 oC higher than glass-transition temperature (Tg), and there was no SHG decay below 100 oC due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Peel Stength of the Acrylic Copolymer and Pressure Sensitive Adhesives (아크릴계 점착제의 박리강도와 점착부여제)

  • 김현중
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 1999
  • The stability and performance (peel strength) of the acrylic copolymer and various modified rosin systems were investigated. The peel strength was measured over a wide range of scaling rates, and the influence of the viscoelasticity of the PSA(pressure sensitive adhesive) was considered. In the case of miscible systems, the peak of peel strength (PSA performance) over wide peel rates was changed and modified systematically with increasing glass transition temperature of the blends. The peak of the peel strength for blended systems shifts toward the lower rate side as glass transition temperature ($T_g$) of the blend increased. The influence of esterification of the rosin on performance and stability against deterioration was greatly modified by blending with rosin of glycerol ester and rosin pentaerythritol ester. The failure mode of the blend varies with the combination with acrylic copolymer and modified rosin, and cohesive failure was found at a lower peel rate while interfacial failure was found at a high peel rate. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were detected.

  • PDF

The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States (결정성 수지의 발포특성)

  • Lee, Bo-Hyoung;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF

Improvement of Moldability for Ultra Thin-Wall Molding with Micro-Patterns (마이크로 패턴을 가진 초박육 사출성형의 성형성 개선)

  • Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.556-561
    • /
    • 2007
  • The rapid thermal response(RTR) molding is a novel process developed to raise the temperature of mold surface rapidly in the injection stage and then cool rapidly to the ejection temperature by air or water. The objectives of this paper are to investigate the effect of mold temperature, pressure and thickness of micro pattern molding and to provide a optimization of RTR injection molding for micro pattern from Moldflow simulation. Optimal minimum temperature and pressure was found without shortcut according to thickness. Filling percentage was influenced by glass transition temperature with the kinds of resin. Optimal temperature is slightly higher than glass transition temperature irrespectively of pressure, thickness, the kinds of resin in the micro pattern molding.

Characterization of the mechanical behavior of PEKK polymer and C/PEKK composite materials for aeronautical applications below and above the glass transition temperature

  • Pedoto, Giuseppe;Smerdova, Olga;Grandidier, Jean-Claude;Gigliotti, Marco;Vinet, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.475-493
    • /
    • 2020
  • This paper is focused on the characterization of the thermomechanical properties of semicrystalline poly-ether-ether-ketone (PEKK) and of carbon fiberreinforced thermoplastic based laminated composites (C/PEKK) below and above the glass transition temperature (Tg). Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and tensile tests are carried out on both pure PEKK polymer and [(±45)2, +45]s C/PEKK composite samples, showing a significant similarity in behavior. The employment of a simple micromechanical model confirms that the mechanical and physical behavior of the polymer and that of the matrix in the composite are similar.