Browse > Article
http://dx.doi.org/10.12989/aas.2020.7.6.475

Characterization of the mechanical behavior of PEKK polymer and C/PEKK composite materials for aeronautical applications below and above the glass transition temperature  

Pedoto, Giuseppe (Department of Physics and Mechanics of Materials, PPRIME Institute, CNRS, ISAE-ENSMA, University of Poitiers)
Smerdova, Olga (Department of Physics and Mechanics of Materials, PPRIME Institute, CNRS, ISAE-ENSMA, University of Poitiers)
Grandidier, Jean-Claude (Department of Physics and Mechanics of Materials, PPRIME Institute, CNRS, ISAE-ENSMA, University of Poitiers)
Gigliotti, Marco (Department of Physics and Mechanics of Materials, PPRIME Institute, CNRS, ISAE-ENSMA, University of Poitiers)
Vinet, Alain (Airbus S.A.S. 2)
Publication Information
Advances in aircraft and spacecraft science / v.7, no.6, 2020 , pp. 475-493 More about this Journal
Abstract
This paper is focused on the characterization of the thermomechanical properties of semicrystalline poly-ether-ether-ketone (PEKK) and of carbon fiberreinforced thermoplastic based laminated composites (C/PEKK) below and above the glass transition temperature (Tg). Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and tensile tests are carried out on both pure PEKK polymer and [(±45)2, +45]s C/PEKK composite samples, showing a significant similarity in behavior. The employment of a simple micromechanical model confirms that the mechanical and physical behavior of the polymer and that of the matrix in the composite are similar.
Keywords
PEKK; carbon fiber reinforced thermoplastic matrix;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choupin, T., Fayolle, B., Regnier, G., Paris, C., Cinquin, J. and Brule, B. (2017), "Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK) copolymer", Polymer, 111, 73-82. https://doi.org/10.1016/j.polymer.2017.01.033.   DOI
2 Freour, S., Jacquemin, F. and Guillen, R. (2005), "On an analytical Self-Consistent model for internal stress prediction in fiber-reinforced composites submitted to hygroelastic load", J. Reinf. Plast. Compos., 24, 1365-1377. https://doi.org/10.1177/0731684405049887.   DOI
3 Gabrion, X., Placet, V., Trivaudey, F. and Boubakar, L. (2016), "About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite", Compos. Part B Eng., 95, 386-394. https://doi.org/10.1016/j.compositesb.2016.03.068.   DOI
4 Guo, Y. and Bradshaw, R.D. (2007), "Isothermal physical aging characterization of Polyether-ether-ketone (PEEK) and Polyphenylene sulfide (PPS) films by creep and stress relaxation.", Mech. Time-Depend. Mater., 11(1), 61-89. https://doi.org/10.1007/s11043-007-9032-7.   DOI
5 Gurtin, M.E., Fried, E. and Anand, L. (2010), The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, U.K.
6 Halpin, J.C. and Tsai, S.W. (1967), "Environmental factors in composite design", Air Force Materials Laboratory Technical Report, AFML-TR-67-423.
7 Herakovich, C.T. (1998), Mechanics of Fibrous Composites, John Wiley and Sons Inc., New York, U.S.A.
8 Li, C. and Strachan, A. (2019), "Prediction of PEKK properties related to crystallization by molecular dynamics simulations with a united-atom model", Polymer, 174, 25-32. https://doi.org/10.1016/j.polymer.2019.04.053.   DOI
9 Martin, M.I., Rodriguez-Lence, F., Guemes, A., Fernandez-Lopez, A., Perez-Maqueda, L.A. and Perejon, A. (2018), "On the determination of thermal degradation effects and detection techniques for thermoplastic composites obtained by automatic lamination", Compos. Part A Appl. Sci. Manufact., 111, 23-32. https://doi.org/10.1016/j.compositesa.2018.05.006.   DOI
10 Martineau, L., Chabert, F., Bernhart, G. and Djilali, T. (2016), "Mechanical behavior of amorphous PEEK in the rubbery state", Proceedings of the ECCM17 - 17th European Conference on Composite Materials, Munich, Germany, June.
11 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of metals with misfitting inclusion", Acta Metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.   DOI
12 Oliver, W.C. and Phar, G.M. (1992), "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564.   DOI
13 Pappada, S., Salomi, A., Montanaro, J., Passaro, A., Caruso, A. and Maffezzoli, A. (2015), "Fabrication of a thermoplastic matrix composite stiffened panel by induction welding", Aerosp. Sci. Technol., 43, 314-320. https://doi.org/10.1016/j.ast.2015.03.013.   DOI
14 Sun, C.T., Chung, I. and Chang, I.Y. (1992), "Modeling of elastic-plastic behavior of LDFTM and continuous fiber reinforced AS-4/PEKK composite", Compos. Sci. Technol., 43(4), 339-345. https://doi.org/10.1016/0266-3538(92)90057-A.   DOI
15 Chelaghma, S., De Almeida, O., Margueres, P., Passieux, J.C., Peric, J.N., Vinet, A. and Reine, B. (2017), "Investigation of PEKK crystal morphology and modelling of the crystallization kinetic of PEKK composites", Proceedings of the 20th Journees Nationales sur les Composites, Paris, France, June.
16 Sutton, M.A., Orteu, J.J. and Schreier, H.W. (2009), Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and Applications, Springer, New York, U.S.A.
17 Tadini, P., Grange, N., Chetehouna, K., Gascoin, N., Senave, S. and Reynaud, I. (2017), "Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components", Aerosp. Sci. Technol., 65, 106-116. https://doi.org/10.1016/j.ast.2017.02.011.   DOI
18 Vinet, A., Fayolle, A., Gigliotti, M. and Brule, B. (2019), "Comportement des matrices PEKK en oxydation", Proceedings of the 21st Journees Nationales sur les Composites, Bordeaux, France, July.
19 Biron, M. (2018), Chapter 9 - Future Prospects for Thermoplastics and Thermoplastic Composites, in Thermoplastics and Thermoplastic Composites (Third Edition), William Andrew Publishing, Norwich, New York, U.S.A.
20 Brinson, L.C. and Gates, T.S. (1995), "Effects of physical aging on long term creep of polymers and polymer matrix composites", Int. J. Solids Struct., 32(6/7), 827-846. https://doi.org/10.1016/0020-7683(94)00163-Q.   DOI