• Title/Summary/Keyword: Glass Micromachining

Search Result 54, Processing Time 0.088 seconds

Micromachining technology using photosensitive glass (감광성유리를 이용한 마이크로머시닝 기술)

  • Cho, Soo-Je
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Micromachining of photosensitive glass by UV exposure, heat treatment, and etching processes is reported. Like photoresist, the photosensitive glass is also classified into positive and negative types by development characteristics. For the positive type, the exposed area is crystallized and etched away during the etching process in HF solution, whereas the unexposed area is crystallized and etched away for the negative type. The crystallized area of the photosensitive glass has an etch rate approximately 30~100 times faster than that of the amorphous area so that it becomes possible to fabricate microstructures in the glass. Based on the unique properties of glass such as high optical transparency, electrical insulation, and chemical/thermal stability, the glass micromachining technique introduced in this work could be widely applied to various devices in the fields of electronics, bio engineering, nanoelectonics and so on.

  • PDF

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Micromachining of Cr Thin Film and Glass Using an Ultrashort Pulsed Laser

  • Choi, Ji-Yeon;Kim, Jae-Gu;Shin, Bo-Sung;Whang, Kyung-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.160-164
    • /
    • 2003
  • Materials processing by ultrashort pulsed laser is actively being applied to micromachining technology due to its advantages with regard to non-thermal machining. In this study, materials processing with ultrashort pulses was studied by using the high repetition rate of a 800 nm Ti:sapphire regenerative amplifier. This revealed that the highly precise micromachining of metallic thin film and bulk glass with a minimal heat affected zone (HAZ) could be obtained by using near damage threshold energy. Grooves with diffraction limited sub-micrometer width were obtained with widths of 620 nm on Cr thin film and 800 nm on a soda-lime glass substrate. The machined patterns were investigated through SEM images. We also phenomenologically examined the influence of variations of parameters and proposed the optimal process conditions for microfabrication.

Fabrication of MEMS Devices Using SOI(Silicon-On-Insulator)-Micromachining Technology (SOI(Silicon-On-Insulator)- Micromachining 기술을 이용한 MEMS 소자의 제작)

  • 주병권;하주환;서상원;최승우;최우범
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.874-877
    • /
    • 2001
  • SOI(Silicon-On-Insulator) technology is proposed as an alternative to bulk silicon for MEMS(Micro Electro Mechanical System) manufacturing. In this paper, we fabricated the SOI wafer with uniform active layer thickness by silicon direct bonding and mechanical polishing processes. Specially-designed electrostatic bonding system is introduced which is available for vacuum packaging and silicon-glass wafer bonding for SOG(Silicon On Glass) wafer. We demonstrated thermopile sensor and RF resonator using the SOI wafer, which has the merits of simple process and uniform membrane fabrication.

  • PDF

Glass Drilling using Laser-induced Backside Wet Etching with Ultrasonic Vibration (초음파 진동과 레이저 후면 에칭을 통한 유리 구멍 가공)

  • Kim, Hye Mi;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Laser beam machining has been known as efficient for glass micromachining. It is usually used the ultra-short pulsed laser which is time-consuming and uneconomic process. In order to use economic and powerful long pulsed laser, indirect processing called laser-induced backside wet etching (LIBWE) is good alternative method. In this paper, micromachining of glass using Nd:YAG laser with nanosecond pulsed beam has been attempted. In order to improve shape accuracy, combined processing with magnetic stirrer has been widely used. Magnetic stirrer acts to circulate the solution and remove the bubble but it is not suitable for deep hole machining. To get better effect, ultrasonic vibration was applied for improving shape accuracy.

High-Speed Femtosecond Laser Micromachining with a Scanner (스캐너를 이용한 고속 펨토초 레이저 가공 기술)

  • Sohn, Ik-Bu;Choi, Sung-Chul;Noh, Young-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2006
  • We report experimental results on the high-speed micromachining using a femtosecond laser (800 nm, 130 fs, 1kHz) and galvanometer scanner system (Raylase, Germany). Periodic hole drilling of silicon and glass with the scan speed of 1-20 mm/s is demonstrated. Finally, we demonstrate the utility of the femtosecond laser application to ITO patterning by using a high-speed femtosecond laser scanner system.

  • PDF

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

Fabrication of Microcantilever-based Biosensor Using the Surface Micromachining Technique (표면 미세 가공기술을 이용한 마이크로 캔틸레버의 제작과 바이오센서로의 응용)

  • Yoo Kyung-Ah;Joung Seung-Ryong;Kang C. J.;Kim Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • We propose an optical and an electrical detection methods for detecting various bio-molecules effectively with microcantilevers. The microcantilevers were fabricated employing surface micromachining technique that has attractive advantages in terms of cost efficiency, simplicity and ability of fabricating in array. The fluid cell system for injection of bio-molecular solution is fabricated using polydimethylsiloxane (PDMS) and a fused silica glass. The microcantilever is deflected with respect to the difference of the surface stress caused by the formation of self-assembled bio-molecules on the gold coated side of the microcantilever. It detected cystamine dihydrochloride and glutaraldehyde molecules and analyzed individual concentrations of the cystamine dihydrochloride solution. We confirm that the deflections of bending-up or bending-down are occurred by the bio-molecule adsorption and microcantilever can be widely used to a ${\mu}-TAS$ and a lab-on-a-chip for a potential detection of various bio-molecules.

The Effect of the Second Impact for Abrasive Jet Micromachining (미세입자 분사 가공에서 2차 충돌의 영향)

  • Park Y.W.;Lee J.M.;Ko T.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.488-491
    • /
    • 2005
  • Abrasive Jet Micromachining (AJM) is a process that uses high pressure air with micron-sized particles to erode a substrate. It has been considered as the most economic and appropriate technique to pattern glass surfaces for the flat panel applications. To accelerate the industrialization of AJM, it is necessary to understand the erosion mechanisms thoroughly. Thus, this paper introduces a new method to model the erosion mechanism in AJM. The model is developed by using the concept of the accumulation of the microdeformation caused by each particle. And this paper proposes the model added the effects of second impact. The developed model is used to simulate the erosion profile, and is compared with the model considered only first impact. It can be concluded that the proposed model predicts the erosion profile more accurately.

  • PDF