• Title/Summary/Keyword: Girder stress

Search Result 366, Processing Time 0.025 seconds

Stress analysis of a new steel-concrete composite I-girder

  • Wang, Yamin;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • A new I-girder consisted of top concrete-filled tubular flange and corrugated web has been proved to have high resistance to both global buckling of the entire girder and local buckling of the web. This study carries out theoretical analysis and experimental tests for this new I-girder to investigate the stress distribution in the flanges and in the corrugated web. Based on some reasonable assumptions, theoretical equations for calculating the normal stress in the flanges and the shear stress in the corrugated web are presented. To verify the accuracy of the presented equations, experimental tests on two specimens were carried out, and the experimental results of stress distribution were used to assess the theoretical prediction. Comparison between the two results indicates that the presented theoretical equations have enough accuracy for calculating the stress in the new I-girder, and thus they can be used reliably in the design stage.

Influence of PC Girder and Steel Girder on Stress Analysis for Maglev straight Track (PC Girder 및 Steel Girder가 자기부상열차 직선 궤도의 응력해석에 미치는 영향)

  • Rho K.S.;Lee J.M.;Cho H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.653-656
    • /
    • 2005
  • Maglev straight track composes of guide rail, back iron, power rail and girder. Above all, girder is important. So this study analyzes the influence of PC girder and steel girder on stress analysis fur Maglev straight track, and to study the stress analysis the finite element method is utilized.

  • PDF

Field Measurements for the Lattice Girder and the Shotcrete Lining (격자지보와 숏크리트 계측에 대한 현장실험 연구)

  • Kim, Hak-Joon;Jin, Soo-Hwan;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.93-102
    • /
    • 2008
  • The use of lattice girder is increased at the tunnel site in Korea because of the several advantages over the traditional H-steel rib. The lattice girder supports the ground with shotcretes, forming a combined support system. Therefore, stress measurements at the lattice girder are necessary to calculated the ground loads. However, field measurements at the lattice girder are rarely performed at the tunnel site. The proper way of stress measurements for the lattice girder is not fully established in Korea. The correction of stress measurements at the shotcretes is often disregarded even though the measured stresses include non-stress related strains. Results of the stress measurements obtained from the lattice girder and non-stress shotcretes are used to improve the credibility of the stress measurements at the primary lining.

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

The Stress Analysis of Diaphragm in Steel box girder bridge (강 박스 거더교의 격벽응력 해석)

  • 조현영;정진환;박중민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.80-86
    • /
    • 1997
  • Recently, the box-girder bridge became quite popular because of the effectiveness of the box section against torsional deformation, and the finite element method has been one of the powerful and versatile method for obtaining the solution of box-girder bridge. The finite element method is used to solve a box girder which is built up with flat plates such as flanges, webs and diaphragm, and box girder is idealized by 8-nodes 2-dimensional isoparmetric finite element. To investigate the stress of diaphragm, substructure analysis is performed with two Parameters which are the location of support and slope of web.

  • PDF

Two-plane Hull Girder Stress Monitoring System for Container Ship

  • Choi Jae-Woong;Kang Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.17-25
    • /
    • 2004
  • Hull girder stress monitoring system for container ship uses four long-base-strain-gages at mid-ship to monitor the resultant stresses and the applied moment components of horizontal, vertical and torsional moments. The bending moments are estimated by using the conventional strain-moment relations, however, the torsional moment related to the warping strain requires the assumption of the shape of torsional moments over the hull girder. Though this shape could be a sine function with an adequate period, it largely depends upon certain empirical formulas. This paper introduces additional four long-base-strain-gages at mid-ship to derive the longitudinal slope of the warping strain because this slope is directly related to the torsional moment by Bi-moment concept. An open-channel-type cantilever beam has been selected as a simplified model for container ship and the result has proved that the suggested concepts can estimate the torsional component accurately. Finally this method can become reliable technique to derive all external moments in hull girder stress monitoring system for container ships.

Characteristic and Analysis of Fatigue Crack for Curved Girder Bridge based on the Stress Range Histerisis (실동이력에 기초한 곡선거더교의 피로균열 특성 및 분석)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Kim, Da Young;Lee, Ha Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.1-13
    • /
    • 2008
  • The web of a horizontally curved plate girder bridge is, in general, subject to not only longitudinal flexural in-plane stress but also out-of-plane bending stress. Therefore, the induced stresses in the fillet welded joints at the intersection of the web and flange plates in the curved plate girder bridge can be considerably high, and the welded joints of gusset plates connecting the main girder to the floor beams or sway bracings can be subject to much more severe situation than those in the ordinary straight plate girder bridge. In order to investigate the cause of fatigue crack occurred in a curved girder bridge that has been served in about 23 years, in this study, field load tests have been performed to obtain the stress characteristics at the welded joint under the real traffic flow. Using the test results, we have investigated the causes of the occurrence of various fatigue cracks and have estimated the fatigue lives for the cracks. In addition, the characteristics of structural behavior at welded joint of the curved girder bridge have been examined by comparing the FE analysis and the field test result.

Numerical study of stress states near construction joint in two-plate-girder bridge with cast-in-place PC slab

  • Yamaguchi, Eiki;Fukushi, Fumio;Hirayama, Naoki;Kubo, Takemi;Kubo, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.173-184
    • /
    • 2005
  • For reducing construction cost, two-plate-girder bridges are getting popular in Japan. This type of bridge employs a PC slab, which is often cast-in-place. In such a case, concrete is not usually cast over the whole slab at one time: some portions are constructed earlier than the rest. Therefore, a construction joint is inevitably created. Due to the drying shrinkage of concrete, tension stress may occur in concrete slab. High tensile stress can be expected near the construction joint where concretes with different ages meet. Moreover, prestressing is not applied over the whole length of slab at one time. This may also serve as a source of tensile stress in the slab. Thus there is a chance that cast-in-place PC slab, especially near the construction joint, may be subjected to tensile cracking. In the present study, stress states near the construction joint in the cast-in-place PC slab of a two-plate-girder bridge are investigated numerically. The finite element method is employed and the three-dimensional analysis is conducted to see the influence of dry shrinkage and prestressing. The stress states in the PC slab thus obtained are discussed. The simplified model of a plate girder for this class of analysis is also proposed.

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.