• 제목/요약/키워드: Ginsenoside Rg3-2H

검색결과 106건 처리시간 0.041초

Lactobacillus acidophilus로 발효한 홍삼 농축액의 기능성 성분 변화 및 이를 이용한 신선치즈 제조 (Changes in the Functional Components of Lactobacillus acidophilus-Fermented Red Ginseng Extract and Its Application to Fresh Cheese Production)

  • 박종혁;문혜정;오전희;이주희;정후길;최경민;차정단;임지예;한수범;이태범;이민정;최혜란
    • Journal of Dairy Science and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.47-53
    • /
    • 2014
  • 본 연구는 김치에서 분리한 L. acidophilus를 이용하여 홍삼 농축액의 진세노사이드 변화 및 폴리페놀 변화량을 확인하였고, 발효유제품 중 신선치즈를 선정하여 홍삼 발효물의 기능성 소재로의 사용 가능성을 확인하였다. 홍삼농축액3% 처리구에 L. acidophilus 유산균주를 $1.0{\times}10^8CFU/mL$로 첨가하여 $40^{\circ}C$에서 24시간 발효한 경우 유산균수는 발효 0시간째 $3.5{\times}10^8CFU/mL$에서 발효 16시간째 $3.8{\times}10^8CFU/mL$로 증가하였다가 그 후 감소하여 발효 24시간째에는 $2.2{\times}10^8CFU/mL$로 측정되었다. Ginsenoside 전환 양상은 고분자 물질로는 Rb1, Rb2, Rc, Rd, Re, Rf, Rg1이 검출되었고, 저분자 물질로는 Rg3(20S), Rg3(20R), Rh2(20S), Rh1(20R), Rh2(20S), Rh2(20R), F1, Compound K, Protopanaxadiol(20S), Protopanaxadiol(20R)이 검출되었다. 고분자 물질이 감소함에 따라 저분자 물질인 Rg3(20S) 및 Rg3(20R), protopanaxadiol(20R), F1, Compound K 등이 증가하였다. 홍삼 발효물의 총 페놀 화합물의 변화량은 에틸아세테이트 분획물 및 16% ACN 분획물에서 발효시간이 증가할수록 폴리페놀 함량이 증가하였다. 홍삼 발효물을 첨가하여 제조한 신선치즈의 저장 중 품질변화를 분석하였으며, 홍삼 발효물의 첨가농도가 높아질수록 pH는 저장기간 동안 감소하였고, 산도 및 유산균수는 증가하였다. 관능검사 결과 홍삼 발효물 1% 처리구가 대조구와 유사한 평가를 얻었으며, 이때의 사포닌 함량은 14.8 mg%, 총 페놀함량은 3.7 mg%이었다. 따라서 향후 동물모델을 통한 추가적인 효능검증이 이뤄진다면 홍삼 발효물을 이용한 기능성 강화 고부가가치 신선치즈 제조가 가능할 것으로 보인다.

  • PDF

The transformation of ginsenosides by acid catalysis in gastric pH

  • Han, Byung-Hoon;Park, Myung-Hwan;Han, Yong-Nam;Woo, Lin-Keun;Ushio-Sankawa;Shoji-Yahara;Osamu-Tanaka
    • Archives of Pharmacal Research
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 1981
  • The ginsenosides of Korean ginseng decomposed profoundly to produce artifact products of prosapogenin $A_{1}$, $A_{2}$ and $A_{3}$ from ginsenoside Rg$_{1}$, prosapogenin $C_{1}$, $C_{2}$ and $C_{3}$ from ginsenoside Re, and prosapogenin E$_{1}$, E$_{2}$ and E$_{3}$ from ginsenoside Rb$_{1}$ by the acid treatment under physiological condition such as 37.deg.C incubation in 0.1 N HCI. 2. The chemical structures of the artifact substances were determined by the analysis CMR and mass spectra of TMS derivatives as following; table omitted.

  • PDF

pH 및 고온 열처리가 홍삼물추출물의 주종 사포닌 성분변화에 미치는 영향 (Effects of pH and High Temperature Treatment on the Changes of Major Ginsenosides Composition in Korean Red Ginseng Water Extract)

  • 최금희;곽이성;이만휘;황미선;김석창;박채규;한경호;송경빈
    • Journal of Ginseng Research
    • /
    • 제32권2호
    • /
    • pp.127-134
    • /
    • 2008
  • This study was carried out to investigate the changes of ginsenosides composition in Korean red ginseng water extract (RGWE) after heated with high temperatures above $100^{\circ}C$. RGWEs were adjusted with pH 3.0, pH 7.0 and pH 10.0, respectively, and then heated at 100,110 and $120^{\circ}C$ for 30 minutes by using autoclave. Total ginsenosides of RGWE treated with heating showed decreasing tendency when compared with control. By TLC analysis, decreasing effect of ginsenosides in RGWE were significantly observed in the acidic condition of pH 3.0, particulary. By HPLC analysis, total ginsenoside of control showed 1.89%, while those of RGWE treated with 100, 110 and $120^{\circ}C$ showed 1.22, 1.05 and 0.97%, respectively. The ratio of protopanaxadiol (PD) to protopanaxatriol (Pr) saponins in control was 1.89, while that of PD/PT in treated RGWEs were level of 1.33 to 1.47. By the result of decreased ratio of PD/PT in RGWE, it was considered that PD type saponin such as ginsenoside$-Rb_{1}$, $-Rb_{1}$, -Rc and -Rd was more unstable than PT type saponin such as ginsenoside-Re and Rg against high temperature heating above $100^{\circ}C$.

DK-MGAR101, an extract of adventitious roots of mountain ginseng, improves blood circulation by inhibiting endothelial cell injury, platelet aggregation, and thrombus formation

  • Seong, Hye Rim;Wang, Cuicui;Irfan, Muhammad;Kim, Young Eun;Jung, Gooyoung;Park, Sung Kyeong;Kim, Tae Myoung;Choi, Ehn-Kyoung;Rhee, Man Hee;Kim, Yun-Bae
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.683-689
    • /
    • 2022
  • Background: Since ginsenosides exert an anti-thrombotic activity, blood flow-improving effects of DK-MGAR101, an extract of mountain ginseng adventitious roots (MGAR) containing various ginsenosides, were investigated in comparison with an extract of Korean Red Ginseng (ERG). Methods: In Sprague-Dawley rats orally administered with DK-MGAR101 or ERG, oxidative carotid arterial thrombosis was induced with FeCl3 (35%), and their blood flow and occlusion time were measured. To elucidate underlying mechanisms, the cytoprotective activities on rat aortic endothelial cells (RAOECs) exposed to hydrogen peroxide (H2O2) were confirmed. In addition, the inhibitory activities of DK-MGAR101 and ERG on agonist-induced platelet aggregation, thromboxane B2 production, and ATP granule release from stimulated platelets as well as blood coagulation were analyzed. Results: DK-MGAR101 containing high concentrations of Rb1, Rg1, Rg3, Rg5, and Rk1 ginsenosides (55.07 mg/g) was more effective than ERG (ginsenosides 8.45 mg/g) in protecting RAOECs against H2O2 cytotoxicity. DK-MGAR101 was superior to ERG not only in suppressing platelet aggregation, thromboxane B2 production, and granule release, but also in delaying blood coagulation, FeCl3-induced arterial occlusion, and thrombus formation. Conclusions: The results indicate that DK-MGAR101 prevents blood vessel occlusion by suppressing platelet aggregation, thrombosis, and blood coagulation, in addition to endothelial cell injury.

Effect of coadministration of enriched Korean Red Ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L) on cardiometabolic outcomes in type-2 diabetes: A randomized controlled trial

  • Jovanovski, Elena;Smircic-Duvnjak, Lea;Komishon, Allison;Au-Yeung, Fei (Rodney);Sievenpiper, John L.;Zurbau, Andreea;Jenkins, Alexandra L.;Sung, Mi-Kyung;Josse, Robert;Li, Dandan;Vuksan, Vladimir
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.546-554
    • /
    • 2021
  • Background: Diabetes mellitus and hypertension often occur together, amplifying cardiovascular disease (CVD) risk and emphasizing the need for a multitargeted treatment approach. American ginseng (AG) and Korean Red Ginseng (KRG) species could improve glycemic control via complementary mechanisms. Additionally, a KRG-inherent component, ginsenoside Rg3, may moderate blood pressure (BP). Our objective was to investigate the therapeutic potential of coadministration of Rg3-enriched Korean Red Ginseng (Rg3-KRG) and AG, added to standard of care therapy, in the management of hypertension and cardiometabolic risk factors in type-2 diabetes. Methods: Within a randomized controlled, parallel design of 80 participants with type-2 diabetes (HbA1c: 6.5-8%) and hypertension (systolic BP: 140-160 mmHg or treated), supplementation with either 2.25 g/day of combined Rg3-KRG + AG or wheat-bran control was assessed over a 12-wk intervention period. The primary endpoint was ambulatory 24-h systolic BP. Additional endpoints included further hemodynamic assessment, glycemic control, plasma lipids and safety monitoring. Results: Combined ginseng intervention generated a mean ± SE decrease in primary endpoint of 24-h systolic BP (-3.98 ± 2.0 mmHg, p = 0.04). Additionally, there was a greater reduction in HbA1c (-0.35 ± 0.1% [-3.8 ± 1.1 mmol/mol], p = 0.02), and change in blood lipids: total cholesterol (-0.50 ± 0.2 mmol/l, p = 0.01), non-HDL-C (-0.54 ± 0.2 mmol/l, p = 0.01), triglycerides (-0.40 ± 0.2 mmol/l, p = 0.02) and LDL-C (-0.35 ± 0.2 mmol/l, p = 0.06) at 12 wks, relative to control. No adverse safety outcomes were observed. Conclusion: Coadministration of Rg3-KRG + AG is an effective addon for improving BP along with attaining favorable cardiometabolic outcomes in individuals with type 2 diabetes. Ginseng derivatives may offer clinical utility when included in the polypharmacy and lifestyle treatment of diabetes. Clinical trial registration: Clinicaltrials.gov identifier, NCT01578837;

New dammarane-type triterpenoid saponins from Panax notoginseng saponins

  • Li, Qian;Yuan, Mingrui;Li, Xiaohui;Li, Jinyu;Xu, Ming;Wei, Di;Wu, Desong;Wan, Jinfu;Mei, Shuangxi;Cui, Tao;Wang, Jingkun;Zhu, Zhaoyun
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.673-679
    • /
    • 2020
  • Background: Panax notoginseng saponin (PNS) is the extraction from the roots and rhizomes of Panax notoginseng (Burk.) F. H. Chen. PNS is the main bioactive component of Xuesaitong, Xueshuantong, and other Chinese patent medicines, which are all bestselling prescriptions in China to treat cardiocerebrovascular diseases. Notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1 are the principal effective constituents of PNS, but a systematic research on the rare saponin compositions has not been conducted. Objective: The objective of this study was to conduct a systematic chemical study on PNS and establish the HPLC fingerprint of PNS to provide scientific evidence in quality control. In addition, the cytotoxicity of the new compounds was tested. Methods: Pure saponins from PNS were isolated by means of many chromatographic methods, and their structures were determined by extensive analyses of NMR and HR-ESI-MS studies. The fingerprint was established by HPLC-UV method. The cytotoxicity of the compounds was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide assay. Results and Conclusion: Three new triterpenoid saponins (1-3) together with 25 known rare saponins (4-28) were isolated from PNS, except for the five main compounds (notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1). In addition, the HPLC fingerprint of PNS was established, and the peaks of the isolated compounds were marked. The study of chemical constituents and fingerprint was useful for the quality control of PNS. The study on antitumor activities showed that new Compound 2 exhibited significant inhibitory activity against the tested cell lines.

장뇌삼 첨가 탁주의 이화학적 특성 및 Ginsenosides 함량 (Physicochemical Characteristics and Ginsenosides Compositions of Makgeolli Added with Mountain Ginsengs)

  • 최강현;손은화;김성준;이제혁;장기효
    • 동아시아식생활학회지
    • /
    • 제23권4호
    • /
    • pp.437-443
    • /
    • 2013
  • Rice wine (makgeolli) containing various amounts of mountain ginsengs (MG) are being prepared with nuruk and yeasts, and the physicochemical characteristics and contents of ginsenosides in MG-makgeolli were analyzed. Average particle size of MG powder is $29.1{\mu}m$. MG slice (20 g) or powder (0~20 g) and rice (3,000 g) were used for 12 days fermentation of makgeolli, makgeolli containing slice of MG (SW-makgeolli), makgeolli containing 2 g (PW1-makgeolli), 10 g (PW2- makgeolli), 20 g (PW3-makgeolli) of powder of MG, respectively. Soluble solids and pH levels show no differences between five kinds of makgeolli groups, whilst the presence of high amounts of MG (PW3-makgeolli) caused decreases in ethanol and acidity. Major free amino acids in MG-makgeolli are glutamic acid and arginine. Total contents of 14 ginsenosides are approximately 2.5 g/100 g of dried MG powder and major ginsenoside were ginsenosides Re, Rb1, Rb2, Rg1, Rc and Rf. During the propagation of makgeolli containing MG, the ginsenosides Rb1, Rb2, Rb3, and Rc decreased, whilst ginsenosides Rg3 and compound K increased highly. It indicates that ginsenosides in MG are metabolized to different forms of ginsenosides by brewing microorganisms.

Ginsenoside Content of North American Ginseng (Panax quinquefolius L. Araliaceae) in Relation to Plant Development and Growing Locations

  • Jackson, Chung Ja C.;Dini, Jean-Paul;Lavandier, Clara;Faulkner, Harold;Rupasinghe, H.P. vasantha;Proctor, John T.A.
    • Journal of Ginseng Research
    • /
    • 제27권3호
    • /
    • pp.135-140
    • /
    • 2003
  • North American ginseng (Panax quinquefolius L.) was analysed for total ginsenosides and ten major ginsenosides (R$_{0}$ , Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, pseudoginsenoside F$_{11}$ and gypenoside XVII), and variations in ginsenoside content with age of plant (over a four-year-period) and geographic location (Ontario versus British Columbia) were investigated. In the roots the total ginsenoside content increased with age up to 58-100 mgㆍg$^{-1}$ dry weights in the fourth year, but in leaves it remained constant over time. Roots and leaves, moreover, had different proportions of individual ginsenosides. The most abundant ginsenosides were Rb$_1$ (56mgㆍg$^{-1}$ for Ontario; 37mgㆍg$^{-1}$ for British Columbia) and Re (21mgㆍg$^{-1}$ for Ontario; 15 mgㆍg$^{-1}$ for British Columbia) in roots, and Rd (28-38 mgㆍg$^{-1}$ ), Re (20-25 mgㆍg$^{-1}$ ), and Rb$_2$ (13-19 mgㆍg$^{-1}$ ) in leaves. Measurable quantities of Rf were found in leaves (0.4-1.8 mgㆍg$^{-1}$ ) but not in roots or stems. Our results show that ginsenoside profiles in general, and Rf in particular, could be used for chemical fingerprinting to distinguish the different parts of the ginseng plant, and that ginseng leaves could be valuable sources of the ginsenosides Rd, Re, and Rb$_2$.

홍삼유출액으로부터 Diaion HP-20 수지 흡착법에 의한 조사포닌의 분리 (An Isolation of Crude Saponin from Red-Ginseng Efflux by Diaion HP-20 Resin Adsorption Method)

  • 곽이성;경종수;김시관;위재준
    • 한국식품영양과학회지
    • /
    • 제30권1호
    • /
    • pp.1-5
    • /
    • 2001
  • This study was carried out to isolate saponin compounds from red-ginseng efflux, which was produced during the industrial processing of red-ginseng from fresh ginseng. We isolated crude saponin from the efflux extract (moisture content 35.0%) by using Diaion HP-20 adsorption method. Non-saponin fraction, which was adsorbed on Diaion HP-20 resin, was removed by eluating with $H_{2}O$ and 25% spirit. Then crude saponin was eluated with 95% spirit, continuously. Saponin in the eluated fractions was confirmed by TLC analysis. Crude saponin isolated from red ginseng efflux extract contained 12.10% of saponin. whereas those of white ginseng and red-ginseng were 3.30 and 3.39%, respectively. Ginsenoside contents showed the highest contents kin crude saponin from red ginseng efflux extract. Expacilly, the ginsenoside-$Rb_{1}$ and Re showed the highest contents in red-ginseng efflux extract when compared with those of white ginseng and red ginseng crude saponins. And the other ginsenosides except ginsenoside-$Rb_{1}$ and -Re also showed the highest contents in red ginseng efflux extract. However, the ratio of PD saponin (Panaxadiol saponin: $Rb_{1}+Rb_{2}$+Rc+Rd) to PT saponin (panaxatriol: $Re+Rg_{1}$) showed almost the same level when compared with those of ginseng saponin fractions. Ratio of PD/PT from red ginseng efflux extract was 1.99. Ratios of PD/PT from white ginseng and red ginseng were 1.85 and 1.84, respectively. Saponin purity, which was calculated by ratio percent of total ginsenoside to curde saponin content, was 45.90%. In case of white ginseng and red ginseng, the purities were 35.50 and 36.00%, respectively. However, by PHLC analysis, we confirmed that crude saponin isolated from red ginsengs. It suggested that crude saponin isolated from red ginseng ellux also would be useful component as ginseng saponins.

  • PDF

열처리(熱處理)에 의한 홍삼(紅蔘)엑기스의 성분변화(成分變化) (Quality Changes in Red Ginseng Extract during High Temperature Storage)

  • 최진호;김우정;양재원;성현순;홍순근
    • Applied Biological Chemistry
    • /
    • 제24권1호
    • /
    • pp.50-58
    • /
    • 1981
  • 열처리(熱處理)가 홍삼(紅蔘)엑기스의 성분변화(成分變化)에 미치는 영향(影響)을 조사(調査)하기 위하여 저온(低溫)에서 추출(抽出), 조제(調劑)된 홍삼(紅蔘)엑기스를 각온도별(各溫度別)로 $40^{\circ}Bx$까지 농축(濃縮)하고 다시 온도별(溫度別), 시간별(時間別)로 숙성(熟成)시켜 숙성과정중(熟成過程中)에 일어나는 pH, 당(糖), saponin 및 색상(色相) 등을 조사(調査)하여 다음과 같은 유의성(有意性)있는 결과(結果)를 얻었다. (1) 홍삼(紅蔘)엑기스의 pH는 농축(濃縮) 및 숙성(熟成)중에 차차 감소(減少)하였으며 $100^{\circ}C$에서 96시간(96時間)까지 숙성(熟成)하면 pH가 4.15까지 감소(減少)하였다. (2) HPLC에 의한 방법(方法)으로 rhamnose, glucose, fructose, sucrose, maltose 둥의 당(糖)을 동정(同定) 및 정량(定量)하였으며 $100^{\circ}C$에서의 당(糖)의 변화(變化)는 sucrose가 30시간(30時間)에서 95%이상 감소(減少)하였고 glucose는 50시간(50時間)까지는 증가(增加)하다가 감소(減少)하였고 fructose는 10시간(10時間)까지 약간 증가(增加)되다가 감소(減少)하였으며 rhamnose는 큰 변화(變化)가 없었다. (3) 수삼(水蔘)이나 백삼(白蔘)에는 없는 rhamnose가 홍삼(紅蔘)엑기스중에서는 동정(同定)되었으며 이는 인삼중(人蔘中)의 일부 배당체(配糖體)의 분해(分解)에 의한 것으로 생각되며 온도(溫度)의 변화(變化)에 따라 큰 변화(變化)가 없는 것으로 보아 다른 당(糖)에 비(比)해 amino-carbonyl 반응(反應)에 적게 관여(關與)하는 것으로 생각된다. (4) 열처리중(熱處理中)의 홍삼(紅蔘)엑기스중의 saponin은 ginsenoside-Re와 $-Rg_1$이 감소(減少)하는 반면(反面) $ginsenoside-Rg_2$와 -Rh group은 증가(增加)되어 saponin group간(間)의 상호변환(相互變換)으로 추정(推定)할 수 있다. (5) 열처리(熱處理)에 의한 홍삼(紅蔘)엑기스의 갈변색소(褐變色素)는 벤젠층에 비해 부탄올층(層)이 약(約) 10배(10倍), 수층(水層)이 약(約) 100배(100倍)로 나타나 홍삼(紅蔘)엑기스의 갈변색소형성(褐變色素形成)은 비효소적(非酵素的) 갈변반응(褐變反應)인 amino-carbonyl 반응(反應)이 주도적(主導的) 역할(役割)을 하고 있음을 알 수 있다. (6) 총당(總糖)과 갈변반응속도(褐變反應速度)는 유의성(有意性)이 있었으며 $100^{\circ}C$의 경우 20시간(20時間)에 가장 색도(色度)가 높아 갈변반응속도(褐變反應速度)가 0.2로 나타났다.

  • PDF