• Title/Summary/Keyword: Ginseng seeds

Search Result 139, Processing Time 0.025 seconds

Studies on the Chemical Constituents from the Seeds of Zizyphus jujuba var. inermis

  • Lee, Nam Kyung;Shin, Hyun Jung;Kim, Wan-Seok;In, Gyo;Han, Chang Kyun
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.258-264
    • /
    • 2017
  • This study analyzed the seeds of Zizyphus jujuba var. inermis commonly used as a remedy in traditional Chinese medicine, in order to determine its various biologically active compounds. Through process 3-pentadecylcatechol, ${\rho}$-menth-8-ene, and ${\gamma}$-bisabolene were isolated and identified for the first time which are urushiol, monoterpenoidal, and sesquiterpenoidal compounds, respectively. Also, found were another sesquiterpenoidal compounds, vomifoliol, and four steroidal compounds, ${\beta}$-sitosterol, stigmasterol, stigmasta-5,23-dien-$3{\beta}$-ol, and stigmast-4-en-3-one. In addition, fourteen triterpenoidal compounds were isolated and identified. These were lupeol, betulinic acid, betulinaldehyde, alphitolic acid, 3-O-cis-${\rho}$-coumaroyl-alphitolic acid, 3-O-trans-${\rho}$-coumaroyl-alphitolic acid, 2-O-cis-${\rho}$-coumaroyl-alphitolic acid, 2-O-trans-${\rho}$-coumaroyl-alphitolic acid, zizyberanalic acid, ceanothic acid, oleanolic acid, maslinic acid, 3-O-cis-${\rho}$-coumaroyl-maslinic acid, and 3-O-trans-${\rho}$-coumaroyl-maslinic acid. The structures were identified by comparing of the spectroscopic experiments, NMR and MS, and then compared that reported data, respectively. Three extracts of water, methanol, and chloroform from the seeds showed a weak anti-proliferative effect, anti-microbial activity, and anti-oxidant effect, respectively.

Effect of Seeding Depth and of Soil Texture on Seeding Emergence and Root Shape of American Ginseng

  • Li, Thomas S.C.
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.115-118
    • /
    • 1997
  • Stratified American ginseng(Panax quinquefoilium L.) seeds were planted in a shaded greenhouse at four depths and in four different soil types to observe effects on emergence rate and root size. Seeding depth affected seedling emergence rates and the number of days required to complete emergence. The shape of the roots was affected by the texture of soil, especially percentage of sand.

  • PDF

Studies on the Physiological Chemistry of Seed Development in Ginseng Seed (인삼식물의 종자발육 과정에 있어서의 생리화학적 연구)

  • Hee-Chun Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.115-133
    • /
    • 1974
  • This study was done on the metabolism of chemical components during the seed development of ginseng. The changes of the chemical components were inspected in the following periods: from the early stage of flower organ formation to flowering time, from the early stage of fruiting to maturity, during the moisture stratification before sowing. From flower bud forming stage to meiosis stage, the changes in the fresh weight, dry weight, contents of carbohydrates, and contents of nitrogen compounds were slight while the content of TCA soluble phosphorus and especially the content of organic phosphorus increased markedly. From meiosis stage to microspore stage the fresh and dry weights increase greatly. Also, the total nitrogen content increases in this period. Insolub]e nitrogen was 62-70% of the total nitrogen content; the increase of insoluble nitrogen seems to have resulted form the synthesis of protein. The content of soluble sugar (reducing and non-reducing sugar) increases greatly but there was no observable increase in starch content. In this same period, TCA soluble phosphorus reached the maximum level of 85.4% of the total phosphorus. TCA insoluble phosphorus remained at the minimum content level of 14.6%. After the pollen maturation stage and during the flowering period the dry weight increased markedly and insolub]e nitrogen also increased to the level of 67% of the total nitrogen content. Also in this stage, the organic phosphorus content decreased and was found in lesser amounts than inorganic phosphorus. A rapid increase in the starch content was also observed at this stage. In the first three weeks after fruiting the ginseng fruit grows rapidly. Ninety percent of the fresh weight of ripened ginseng seed is obtained in this period. Also, total nitrogen content increased by seven times. As the fruits ripened, insoluble nitrogen increased from 65% of the total nitrogen to 80% while soluble nitrogen decreased from 35% to 20%. By the beginning of the red-ripening period, the total phosphoric acid content increased by eight times and was at its peak. In this same period, TCA soluble phosphorus was 90% of total phosphorus content and organic phosphorus had increased by 29 times. Lipid-phosphorus, nucleic acid-phosphorus and protein-phosphorus also increased during this stage. The rate of increase in carbohydrates was similar to the rate of increase in fresh weight and it was observed at its highest point three weeks after fruiting. Soluble sugar content was also highest at this time; it begins to decrease after the first three weeks. At the red-ripening stage, soluble sugar content increased again slightly, but never reached its previous level. The level of crude starch increased gradually reaching its height, 2.36% of total dry weight, a week before red-ripening, but compared with the content level of other soluble sugars crude starch content was always low. When the seeds ripened completely, more than 80% of the soluble sugar was non-reducing sugar, indicating that sucrose is the main reserve material of carbohydrates in ginseng seeds. Since endosperm of the ripened ginseng seeds contain more than 60% lipids, lipids can be said to be the most abundant reserve material in ginseng seeds; they are more abundant than carbohydrates, protein, or any other component. During the moisture stratification, ginseng seeds absorb quantities of water. Lipids, protein and starch stored in the seeds become soluble by hydrolysis and the contents of sugar, inorganic phosphorus, phospho-lipid, nucleic acid-phosphorus, protein phosphorus, and soluble nitrogen increase. By sowing time, the middle of November, embryo of the seeds grows to 4.2-4.7mm and the water content of the seeds amounts to 50-60% of the total seed weight. Also, by this time, much budding material has been accumulated. On the other hand, dry stored ginseng seeds undergo some changes. The water content of the seeds decreases to 5% and there is an observable change in the carbohydraes but the content of lipid and nitrogen compounds did not change as much as carbohydrates.

  • PDF

Study on the Allelopathy of the Korean Ginseng (한국 인삼의 Allelopathy에 관한 연구)

  • Lee, Seong Ho;Jai Seup Ro;Kyung Soon Lee
    • The Korean Journal of Ecology
    • /
    • v.6 no.4
    • /
    • pp.250-256
    • /
    • 1983
  • Dehiscence of ginseng seeds under the various conditions, growing experiment in the different soil conditions, and growing experiment with extracts obtained by water passed the pot of 4 year ginseng plants were performed. The results obtained are as follows: The survival rate of ginseng plants in the soil of ginseng field sterilized by MIYAZAWA's method was higher than that of the non-sterilized, but lower than that of the control. The survival rate of ginseng plants on the sterilized soil of ginseng field was lower than that on the surrounding soil. The growth of ginseng plants cultivated with the water passed through the pot-planted 4-year-old ginseng plants was strongly inhibited in comparison with the control. Besides biological cause, chemical products excreted from the root of ginseng plants might be the important factors of soil sickness in the successive cultivation of the same plants.

  • PDF

Effect of Tolclofos-methyl on damping-off of ginseng seedlings incited by Rhisoctonia solani (인삼 모잘록병 (Rhizoctonia soEani)에 대한 Tolclofos-methyl의 효과)

  • Yu, Yeon-Hyeon;Jo, Dae-Hui;O, Seung-Hwan
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.114-118
    • /
    • 1989
  • Tolclofos-methyl applied as seed dipping at 1,000 ppm for 3 hrs before sowing and soil drenching at the rate of 300 g ai./10 a in the middle of April protected emerging seedlings of Panax ginseng from damping-off caused by Rhiiutonia solani(AG2-1) in Yangjik Soil artificially infested with the pathogen. Germination rates with tolclofos-methyl, pencycuron, and control were 53.7%, 45.8%, and 7.5%, respectively, while the rate of the seeds at non-infested soil was 62.6%. The effectiveness of Tolclofos-methyl against the pathogen in the soil lasted upto 32 days in vitro. However, the transpiratio of ginseng seedlings increased greatly with chemical treatment, showing 0.02, 0.12, and 0.24 m1/cm2 leaf area/day at 0, 1,2, and 4 ppm a.i. of the fungicide, respectively.

  • PDF

Effects of $GA_3$ and ABA Application on After-ripening of Panax quinquefolium Seeds during Stratification ($GA_3$ 및 ABA 사용이 매장처리 중 미국삼 종자의 후숙에 미치는 영향)

  • Guixing Ren;Feng Chen;Haozhe Lian;Jinghui Zhao;Xianzong Gao;Chongming Guo
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.83-87
    • /
    • 1996
  • The effects of gibberilin ($GA_3$) on levels of endogenous indole-3-acetic acid (IAA) and zeatin in both fresh and stratified American ginseng (Panax quinquefolium) seeds were investigated. In our first experiment, the fresh seeds were stratified after soaked in 80 ppd $GA_3$ solution for 24 hours. We found that the IAA concentration in embryo increased by 50.7% and 82.1% respectively at the 120th day and the 188th day of stratification, and the zeatin concentration also increased by 3.8% and 51.6% respectively. In our second experiment, we treated the seeds after 134 days stratification with 80 ppm GA3 for 24 hours and then continued to stratify them. We found that the IAA concentration in embryo increased by 32.9% and 17.7% respectively at the 164th day and the 208th day of stratification while zeatin concentration increased by 22.7% and 30.6% respectively In our another experiment, we studied the effects of $GA_3$, abscislc acid (ABA) and GA, plus ABA on germination rate of seeds treated with these plant hormones during stratification. We found that when the stratified seeds whose ratio of embryo had reached 75% were treated with 80 ppm GA3 for 24 hours and then were allowed to be stratified for another 88 days, the weight and length of embryo (p < 0.05), and germination rate (p < 0.01) increased. In contrast, the 25 ppm ABA treated with for 24 hours was found to Inhibit the growth of embryo (p < 0.05) and reduce the germination rate (p < 0.05) . The experiment of combination treatment of $GA_3$ and ABA showed that $GA_3$ could relieve the inhibitory effects of the ABA on the development of the seeds.

  • PDF

Effect of Seedling Characters on the Growth of Ginseng Plant on Field. .1. Relationship between Seedling Weight and the growth of ginseng plant on field. (묘삼의 소질이 본포에서의 생육에 미치는 영향 제 3보 황삼의 중량과 본포5.6연근의 인삼생육과의 관계)

  • 이성식;천성용;김오태;이창화
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 1984
  • In order to clarify an effect of seedling weight on the growth pattern of ginseng, seedlings ranged from 0.4g plant to 1.8g plant were transplanted, and then the characters of 5- and 6-year-old ginseng were investigated. The characters of root and leaf, such as length and diameter of main root, root weight, leaf area, and leaf dry weight of 5- and 6-year-old ginseng originated from large seedlings were superior as compared with those from small seedlings, and percentage of missing plant was increased with the increase of seedling weight. There were, however, no significant difference in stem length, stem dry weight, number of seeds per plant and number of palmate leaves and leaflets per plant in 5- and 6-year-old ginseng and these characters were not affected by the weight of seedings transplanted. Root field per unit area was higher in seedings of above 0.6g/plant than in small seedlings.

  • PDF

Chemical Components Composition on Different Parts of Fruit in Schisandra chinensis Baillon (오미자 열매 부위별 이화학적 특성)

  • Lee, Ka Soon;Lee, Bo Hee;Seong, Bong Jae;Kim, Sun Ick;Han, Seung Ho;Kim, Gwan Hou;Park, Saet Byeol;Kim, Hyun Ho;Choi, Taek Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.851-858
    • /
    • 2016
  • The effective components of Schisandra chinensis are lignans (schizandrins and gomisins), which have various physiological functionalities such as anti-cancer, anti-inflammatory, and antioxidant activities. This study was carried out to determine the different parts of fruits in Schisandra chinensis to elevate their usefulness. Schisandra chinensis was separated into skin (epicarp), pulp (mesocarp), and seeds, and raw Omija and hot-dried Omija (HDO) were used as control. The most abundant component was nitrogen free extract (6.88~56.70%) followed by crude lipids (1.65~19.04%). The main mineral was K (383.10~2,024.10 mg/100 g), except in seeds where P was the main mineral. The main lignan in all parts of fruit was schizandrin, and the highest content of schizandrin was 9.46 mg/g in dried seeds. Total lignan content was 25.97 mg/g and 14.97 mg/g in dried seeds and HDO, respectively. A total of 17 components of fatty acids in seeds and HDO were detected, of which linoleic acid (72.66~73.78%), oleic acid (14.78~17.39%), palmitic acid (2.88~3.54%), and capric acid (1.70~4.93%) were determined as the major components. Main lignans and fatty acids of Schisandra chinensis fruit contain mainly seeds. Therefore, it is more efficient to use seeds than pulp and extract of fruit itself to use the components of Omija.

Effects of Sowing Density and Thinning Treatment on Growth Characteristics and Yield of 3-Year-Old Ginseng Cultivated in a Greenhouse (인삼 하우스 직파재배 시 파종밀도 및 솎음처리가 3 년근 인삼의 생육과 수량에 미치는 영향)

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Jang, In Bok;Hyun, Dong Yun;Park, Hong Woo;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • Background: The cultivation of ginseng (Panax ginseng C. A. Meyer) in greenhouses could reduce the use of pesticides and result in higher yield; however, construction costs are problematic. The adaptation of direct-sowing culture in greenhouses could reduce the cost of ginseng production. Methods and Results: To improve seedling establishment in direct-sowing culture, effects of sowing density (SD), number of seeds sown per hole (SN), and thinning (TH) treatment on the root yield were investigated after 3 years of seeding. The emergence rate was significantly influenced by SD, but not by SN or TH. Damping-off and rusty roots increased with an increase in SN with diminishing effects of SN on seedling establishment. Root weight and diameter were affected by SD, SN, and TH, however, there were no statistical significances. The total number of roots harvested per unit area increased with increasing SD and SN, and the weight of roots was affected by SD, but not by SN or TH. Conclusions: Multi-seed sowing per hole and/or thinning might not be an efficient method for the direct-sowing culture of ginseng. The SD for direct seeding culture in greenhouses should be approximately $33-42seeds/m^2$ for an optimum yield of 3-year-old ginseng.