• Title/Summary/Keyword: Ginseng seeds

Search Result 139, Processing Time 0.024 seconds

Quality and antioxidant activity of ginseng seed processed by fermentation strains

  • Lee, Myung-Hee;Lee, Young-Chul;Kim, Sung-Soo;Hong, Hee-Do;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2015
  • Background: Fermentation technology is widely used to alter the effective components of ginseng. This study was carried out to analyze the characteristics and antioxidant activity of ginseng seeds fermented by Bacillus, Lactobacillus, and Pediococcus strains. Methods: For ginseng seed fermentation, 1% of each strainwas inoculated on sterilized ginseng seeds and then incubated at $30^{\circ}C$ for 24 h in an incubator. Results: The total sugar content, acidic polysaccharides, and phenolic compounds, including p-coumaric acid, were higher in extracts of fermented ginseng seeds compared to a nonfermented control, and highest in extracts fermented with B. subtilis KFRI 1127. Fermentation led to higher antioxidant activity. The 2,2'-azine-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was higher in ginseng seeds fermented by Bacillus subtilis than by Lactobacillus and Pediococcus, but Superoxide dismutase (SOD) enzyme activity was higher in ginseng seeds fermented by Lactobacillus and Pediococcus. Conclusion: Antioxidant activities measured by ABTS and SOD were higher in fermented ginseng seeds compared to nonfermented ginseng seeds. These results may contribute to improving the antioxidant activity and quality of ginseng subjected to fermentation treatments.

Effect of Seeding Rate on Growth and Yield of Ginseng Plant in Direct-Sowing Culture (인삼 직파재배에서 파종밀도가 생육 및 수량에 미치는 영향)

  • 이종철;안대진
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.299-303
    • /
    • 1998
  • To know possibility of raw ginseng production for white- and red-ginseng by direct-sowing culture, seeds were directly sowed or seedlings were transplanted at soil condition of sandy loam in ginseng field. After cultivation, the characters of 5-year-old ginseng were investigated. Number of survived plants was increased with increase the seeding quantity in direct-sowing culture, the survived plants in direct-sowing culture was higher than that of transplanting one. Rate of the numbers of survived plants to numbers of seeds sowed in plots of 134 or 90 seeds sowed per tan, 180 x 90cm area, inspire of high number of survived plant was high compared to that of transplanting culture. Occurrence rate of rusty root of ginseng in direct-sowing culture was low significantly compared to that of transplanting culture. Root yield showed in the order of 134, 268, 90 seeds sowed, the values of yield in direct-sowing culture were high obviously compared to that of transplanting one. Individual root weight was increased with decrease the seeding quantity, however, the root weight in plot of 90 seeds sowed showed almost equal the weight in transplanting culture. The number of usable raw ginseng for white- and red-ginseng was increased with decrease of the seeding quantity; the numbers were higher than that of transplanting culture remarkably. We concluded that optimum seedling rate in direct-sowing culture of ginseng was 90 to 134 seeds per tan considering the yield per area and production rate of large root.

  • PDF

Antioxidant Activities of Ginseng Seeds Treated by Autoclaving

  • Bae, Hye-Min;Kim, Sung-Soo;Cho, Chang-Won;Yang, Deok-Chun;Ko, Sung-Kwon;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.411-417
    • /
    • 2012
  • Ginseng seeds were treated with different autoclaving temperatures and autoclaving times, and extracted with 80% methanol to measure changes in antioxidant activity. The antioxidant activity of ginseng seeds treated by autoclaving was measured by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, 2,2'-aziono-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical scavenging activity, superoxide dismutase SOD-like activity, ferric reducing antioxidant power (FRAP), and total phenolic compound content. As autoclaving temperature and time were increased, the L lightness value decreased and the redness value tended to increase. Total phenolic compound content was about three times higher in ginseng seeds treated with autoclaving at 130°C than in ginseng seeds that were not treated. DPPH radical scavenging activity and ABTS radical scavenging activity increased as autoclaving temperature and time were increased. In particular, when the concentration was 100 ppm, the ABTS radical scavenging activity was 91.80% in ginseng seeds treated by autoclaving at $130^{\circ}C$, which was the highest antioxidant activity. FRAP and SOD-like antioxidant activity tended to increase significantly as autoclaving temperature and time were increased.

Physicochemical Characteristics of 3-Year-Old Ginseng by Various Seeding Density in Direct-Sowing Culture (파종밀도에 따른 직파재배 3년근 인삼의 수량 및 품질 특성)

  • Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Hyun-Ho;Kim, Sun-Ick;Han, Seung-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This study was carried out to investigate the physicochemical characteristics of 3-year-old ginseng (for Samgyetang product) cultured by various seeding density in direct-sowing culture. Ginsengs were cultured by the seeding density, 275, 300, 330 352 and 396 seeds per Kan, $180{\times}90cm$ area. Survived rate (82.1%) were the highest in plot of 352 seeds sowed, length and leaf width were high in plot of 300 and 352 seeds. Root yield grain was increased with increase of the seeding density in direct-sowing culture except 352 seeds sowed. Average root weight and diameter were the highest in plot of 352 seeds sowed, 31.6 g and 18.4 mm, respectively. Crude saponin and each ginsenosides content were the highest in plot of 275 seeds sowed. Rg1 content was decreased, Rc and Rb2 content were increased with increase of the seeding density. Total soluble sugar content was the highest in plot of 330 seeds sowed and the lowest in plot of 396 seeds sowed, and oligo- and disaccaride content were high in plot of 330 and 352 seeds sowed. Reological characteristics of ginsengs cultivated according to various seeding density, hardness and springness were high and maximum fracture force was low with decrease of the seeding quantity.

Effects of Ethyl Methane Sulphonate Treatment on Ginseng Seeds (Ethyl Methane Sulfonate처리 인삼종자의 생물학적 효과)

  • Choe, Gwang-Tae;An, Sang-Deuk;Park, Gyu-Jin
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.163-169
    • /
    • 1981
  • In order to clarify the biological effects of chemical mutagen, ethyl methane sulphonate (EMS), in M, seedling(Ponax ginseng C. A. Meyer) . the dehiscent seeds of ginseng were treated with EMS for 12 hours at 20t and Post-washed for 24 to 72 hours. The differences of biological injuries in M, generation due to the concentration of EMS were quite obvious in rate and date of germination, stem length, stem diameter, leaf length, leaf width, root length, root diameter, and root weight . Especially, the seeds treated with the high concentration of EMS , above 0.8%, were not germinated The growth injury was directly proportional to the concentration of EMS but not relative to the post-washing time of afire 25 hours. The useful range of EMS concentration and post-washing time in ginseng seeds were 0.4 % - 0.6% and above 24 hours, respectively.

  • PDF

Studies on the Gathering Seed for the Natural Condition in Nicotiana Tabacum L. (황색종 잎담배 종자의 채종에 관한 연구)

  • 안대진;이종두;민영근;류익상
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.4 no.2
    • /
    • pp.37-39
    • /
    • 1982
  • This experiment was conducted to obtained basical source for gathering seeds in flue- cured (NC 2326), and to investigate some characters on the relation to gathering number of capsules per a plant; amount of gathering seeds, weight per 1000 seeds and germination rate, respectively. As a results; correlation coefficient of number of capsules and amount of gathering seeds was pros(live correlation (r =0.9771**) , Weight per 1000 seeds (0.16g) was good from 39$\pm$2 capsules and amount of gathering seeds was 4.8g. So it is considered that method of gathering seeds wise proved to be a desirable 39: 2 capsules and amount of gathering seeds was 4- 5 gram.

  • PDF

Determination of Ginsenosides Content in Korean Ginseng Seeds and Roots by High Performance Liquid Chromatography

  • Hu, Jiang Ning;Lee, Jeung-Hee;Shin, Jung-Ah;Choi, Jae-Eul;Lee, Ki-Teak
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.430-433
    • /
    • 2008
  • A high performance liquid chromatography (HPLC) method has been successfully developed to identify and quantify major ginsenosides in Korean ginseng seeds and roots. Using gradient elution of acetonitrile and water without buffer, the 6 major ginsenosides ($Rb_1,\;Rb_2$, Rc, Rd, Re, and $Rg_1$) were identified. Compared with ginseng roots, the amount of ginsenoside Re and Rd in ginseng seeds were significantly higher than those in ginseng roots (p<0.05). In ginseng seeds, the content of protopanaxtriol (PPT) was higher than that of protopanaxdiol (PPD) and the ratio of PPT and PPD was approximately 2.2 : 1. However, the content of PPT was lower than that of PPD in ginseng roots. It should be mentioned that both content of PPT and PPD in ginseng seeds were much higher than those in ginseng roots.

Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity

  • Rho, Taewoong;Jeong, Hyun Woo;Hong, Yong Deog;Yoon, Keejung;Cho, Jae Youl;Yoon, Kee Dong
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.145-153
    • /
    • 2020
  • Background: Panax ginseng Meyer (Araliaceae) is a highly valued medicinal plant in Asian regions, especially in Korea, China, and Japan. Chemical and biological studies on P. ginseng have focused primarily on its roots, whereas the seeds remain poorly understood. This study explores the phytochemical and biological properties of compounds from P. ginseng seeds. Methods: P. ginseng seeds were extracted with methanol, and 16 compounds were isolated using various chromatographic methods. The chemical structures of the isolates were determined by spectroscopic data. Antiinflammatory activities were evaluated for triterpene and steroidal saponins using lipopolysaccharide-stimulated RAW264.7 macrophages and THP-1 monocyte leukemia cells. Results: Phytochemical investigation of P. ginseng seeds led to the isolation of a novel triterpene saponin, pseudoginsenoside RT8, along with 15 known compounds. Pseudoginsenoside RT8 exhibited more potent antiinflammatory activity than the other saponins, attenuating lipopolysaccharide-mediated induction of proinflammatory genes such as interleukin-1β, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-9, and suppressed reactive oxygen species and nitric oxide generation in a dose-dependent manner. Conclusion: These findings indicate that pseudoginsenoside RT8 has a pharmaceutical potential as an antiinflammatory agent and that P. ginseng seeds are a good natural source for discovering novel bioactive molecules.

Optimal Harvesting Time of Ginseng Seeds and Effect of Gibberellic Acid (GA3) Treatment for improving Stratification Rate of Ginseng (Panax ginseng C. A. Meyer) Seeds (인삼 종자의 개갑률 향상을 위한 적정 수확시기 및 GA3 처리 효과)

  • Kim, Young Chang;Kim, Young Bae;Park, Hong Woo;Bang, Kyong Hwan;Kim, Jang Uk;Jo, Ick Hyun;Kim, Kee Hong;Song, Beom Heon;Kim, Dong Hwi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.423-428
    • /
    • 2014
  • This study was performed to identify optimal harvesting time of ginseng seeds and to examine the effect of $GA_3$ treatment for improvement of seed stratification rate. Ginseng seeds harvested from Land race, Chunpoong and Yunpoong cultivar in July 20 were tested for stratification rate. It was shown that stratification rates of land race, Yunpoong and Chunpoong cultivar were 94.1%, 93.1%, and 82.6%, respectively. Seeds of Chunpoong cultivar harvested 10-15 days later showed a comparable stratification rate to that of Land race, indicating that late harvest of Chunpoong seeds is beneficial for the increase of stratification rate. The higher stratification rate was found in mature seeds (92.3%) than immature seeds (37.8%), both of which were harvested in July 20. Stratification rate of mature seeds harvested in July 15 was 87.5%, demonstrating optimal harvesting time of ginseng seeds with higher stratification rate is after mid-July. An exponential growth of endosperms of ginseng seeds was observed from early June to mid-June and then slow growth was observed. There was no obvious growth of embryos from fertilization to mid-August. After the this time, embryos quickly grew until late October. Thus, appropriate stratification control is essential during the period (from early September to late October) in order to optimize embryo growth and development. While no increase of stratification rate was observed in seeds treated with 50 ppm of $GA_3$, significant increases were observed in seeds treated with 100 ppm of $GA_3$. At this concentration of $GA_3$, the stratification rate of Land race, Chunpoong and Yunpoong cultivar was 95.0%, 95.3%, and 96.5%, respectively.

Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

  • Lee, Myung-Hee;Rhee, Young-Kyoung;Choi, Sang-Yoon;Cho, Chang-Won;Hong, Hee-Do;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.428-433
    • /
    • 2017
  • Background: In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. Methods: The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at $30^{\circ}C$ for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.