Browse > Article
http://dx.doi.org/10.1016/j.jgr.2018.11.001

Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity  

Rho, Taewoong (College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea)
Jeong, Hyun Woo (Amorepacific Corp. R&D Unit)
Hong, Yong Deog (Amorepacific Corp. R&D Unit)
Yoon, Keejung (Department of Integrative Biotechnology, Sungkyunkwan University)
Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University)
Yoon, Kee Dong (College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea)
Publication Information
Journal of Ginseng Research / v.44, no.1, 2020 , pp. 145-153 More about this Journal
Abstract
Background: Panax ginseng Meyer (Araliaceae) is a highly valued medicinal plant in Asian regions, especially in Korea, China, and Japan. Chemical and biological studies on P. ginseng have focused primarily on its roots, whereas the seeds remain poorly understood. This study explores the phytochemical and biological properties of compounds from P. ginseng seeds. Methods: P. ginseng seeds were extracted with methanol, and 16 compounds were isolated using various chromatographic methods. The chemical structures of the isolates were determined by spectroscopic data. Antiinflammatory activities were evaluated for triterpene and steroidal saponins using lipopolysaccharide-stimulated RAW264.7 macrophages and THP-1 monocyte leukemia cells. Results: Phytochemical investigation of P. ginseng seeds led to the isolation of a novel triterpene saponin, pseudoginsenoside RT8, along with 15 known compounds. Pseudoginsenoside RT8 exhibited more potent antiinflammatory activity than the other saponins, attenuating lipopolysaccharide-mediated induction of proinflammatory genes such as interleukin-1β, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-9, and suppressed reactive oxygen species and nitric oxide generation in a dose-dependent manner. Conclusion: These findings indicate that pseudoginsenoside RT8 has a pharmaceutical potential as an antiinflammatory agent and that P. ginseng seeds are a good natural source for discovering novel bioactive molecules.
Keywords
Antiinflammatory activity; Panax ginseng seeds; Pseudoginsenoside $RT_8$;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 The Compilation Committee of Pharmacognosy Textbook. Pharmacognosy. 2nd ed. Geyong-gi: Dong Meyoung Press; 2015. p. 196-203.
2 Shergis JL, Di YM, Zhang AL, Vlahos R, Helliwell R, Ye JM, Xue CC. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement Ther Med 2014;22:944-53.   DOI
3 Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease. Exp Gerontol 2014;50:95-105.   DOI
4 Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, et al. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on nonalcoholic fatty liver disease of rat. Food Chem Toxicol 2013;55:586-91.   DOI
5 Xue CC, Shergis JL, Zhang AL, Worsnop C, Fong H, Story D, Da Costa C, Thien FC. Panax ginseng C.A Meyer root extract for moderate chronic obstructive pulmonary disease (COPD): study protocol for a randomised controlled trial. Trials 2011;12:164.   DOI
6 Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12:110-6.   DOI
7 Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X. Ginsenoside Rb1 inhibits free fatty acids induced oxidative stress and inflammation in 3T3L1 adipocytes. Mol Med Rep 2017;16:9165-72.   DOI
8 Kim SOh MH, Kim BS, Kim WI, Cho HS, Park BY, Park C, Shin GW, Kwon J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J Ginseng Res 2015;39:365-70.   DOI
9 Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 2012;60:9595-602.   DOI
10 Sheller J, Chalaris A, Schmit-Arras D, Rose-John S. The pro- and antiinflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011;1813:878-88.   DOI
11 Ren K, Torres R. Role of interleukin-$1{\beta}$ during pain and inflammation. Brain Res Rev 2009;60:57-64.   DOI
12 Garcia-Ortiz A, Serrador JM. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med 2018;24:412-27.   DOI
13 Botta M, Distrutti E, Mencarelli A, Parlato MC, Raffi F, Cipriani S, Fiorucci S. Anti-inflammatory activity of a new class of nitric oxide synthase inhibitors that release nitric oxide. ChemMedChem 2008;3:1580-8.   DOI
14 Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998;12:1063-73.   DOI
15 Han DH, Kim SH, Higashida K, Jung SR, Polonsky KS, Klein S, Holloszy JO. Ginsenoside Re rapidly reverses insulin resistance in muscles of high-fat diet fed rats. Metabolism 2012;61:1615-21.   DOI
16 Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008;22:222-6.   DOI
17 Li J, Liu Y, Li W, Wang Z, Guo P, Li L, Li N. Metabolic profiling of the effects of ginsenoside Re in an Alzheimer's disease mouse model. Behav Brain Res 2018;337:160-72.   DOI
18 Gao Y, Yang MF, Su YP, Jiang HM, You XJ, Yang YJ, Zhang HL. Ginsenoside Re reduces insulin resistance through activation of PPAR-gamma pathway and inhibition of TNF-alpha production. J Ethnopharmacol 2013;147:509-16.   DOI
19 Yamamoto M, Uemura T, Nakama S, Uemiya M, Kumagai A. Serum HDLcholesterol-increasing and fatty liver-improving actions of Panax ginseng in high cholesterol diet-fed rats with clinical effect on hyperlipidemia in man. Am J Chin Med 1983;11:96-101.   DOI
20 Yamamoto M, Kumagai A. Anti-atherogenic action of Panax ginseng in rats and in patients with hyperlipidemia. Planta Med 1982;45:149.   DOI
21 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9.   DOI
22 Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43.   DOI
23 Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93.   DOI
24 Hasegawa H. Proof of the myskoterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7.   DOI
25 Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851-8.   DOI
26 Abdalla SI, Sanderson IR, Fitzgerald RC. Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis 2005;26:1627-33.   DOI
27 Moore BA, Manthey CL, Johnson DL, Bauer AJ. Matrix metalloproteinase-9 inhibition reduces inflammation and improves motility in murine models of postoperative ileus. Gastroenterology 2011;141:1283-92.   DOI
28 Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol 2007;7:1659-67.   DOI
29 Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Tolllike receptor 4. J Biol Chem 2001;276:16683-9.   DOI
30 Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, Polonsky KS, Yuan CS. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 2002;9:254-8.   DOI
31 Cho JG, Lee MK, Lee JW, Park HJ, Lee DY, Lee YH, Yang DC, Baek NI. Physicochemical characterization and NMR assignments of ginsenosides Rb1, Rb2, Rc, and Rd isolated from Panax ginseng. J Ginseng Res 2010;34:113-21.   DOI
32 Seo E, Kim S, Lee SJ, Oh BC, Jun HS. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice. Nutrients 2015;7:3038-53.   DOI
33 Lee DY, Cho JG, Lee MK, Lee JW, Park HJ, Lee YH, Yang DC, Baek NI. Identification of NMR data for ginsenoside Rg1. J Ginseng Res 2008;32:291-9.   DOI
34 Cho JG, In SJ, Jung YJ, Cha BJ, Lee DY, Kim YB, Yeom M, Baek NI. Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots. J Ginseng Res 2014;38:116-22.   DOI
35 De Rosa S, De Giulio A, Tommonaro G. Triterpene and sterol glucoside from cell cultures of Lycopersicon esculentum. Phytochemistry 1997;44:861-4.   DOI
36 Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116:1793-801.   DOI
37 Chang YC, Chang FR, Khalil AT, Hsieh PW, Wu YC. Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch C 2003;58:521-6.
38 Grishkovets VI, Tolkacheva NV, Shashkov AS, Ya. Chirva V. Triterpene glycosides of Hedera taurica VII. Structures of taurosides A and D from the leaves of Crimean ivy. Chem Nat Compd 1991;27:603-6.   DOI
39 Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem Pharm Bull 2009;57:283-7.   DOI
40 Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K, Kanisawa T. Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 1992;31:827-31.   DOI
41 Park SY, Kim JS, Lee SY, Bae KH, Kang SS. Chemical constituents of Lathyrus davidii. Nat Prod Sci 2008;14:281-8.
42 Fang Z, Jeong SY, Choi JS, Min BS, Min BK, Woo MH. Cholinesterase inhibitory constituents from Capsosiphon fulvescens. Nat Prod Sci 2012;18:233-8.
43 Rho T, Yoon KD. Chemical constituents of Nelumbo nucifera seeds. Nat Prod Sci 2017;23:253-7.   DOI
44 Liu JP, Tan X, Liu HY, Zhang QH, Lu D, Li PY, Zhao CF. Two novel dammaranetype compounds from the leaves and stems of Panax quinquefolium L. J Asian Nat Prod Res 2012;15:974-8.   DOI
45 Fujita S, Kasai R, Ohtani K, Yamasaki K, Chiu MH, Nie RL, Tanaka O. Dammarane glycoside from aerial parts of Neoalsomitra integrifolia. Phytochemistry 1995;38:465-72.   DOI
46 Fusita S, Kasai R, Ohtani K, Yamasaki K, Chiu MH, Nie RL, Tanaka O. Dammarane glycoside from aerial parts of Neoalsomitra integrifolia. Phytochemistry 1995;39:591-602.   DOI