• Title/Summary/Keyword: Ginseng cultivation

Search Result 351, Processing Time 0.039 seconds

Difference of Essential Oil in Korean Valerian Root (Valeriana fauriei var. dasycarpa Hara) Grown at Various Locality in Korea (광릉쥐오줌풀의 산지별 정유성분 비교)

  • Lee, Jong-Chul;Kim, Young-Hoi
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.2
    • /
    • pp.175-178
    • /
    • 1995
  • The study was conducted to investigate the effect of cultivation area with different sea levels on essential oil in the root of Valeriana fauriei var. dasycarpa Hara (Valerianaceae). The total content of the essential oil was not different in various cultivation area, however, its composition varied. The major components were bornyl acetate and sesquiterpene alcohol in three cultivation areas. Among the valepotrate components known as major active components in Europe and Nepal valerian, valtrate was detected in a small amount, but the quantity was not changed.

  • PDF

Residual Characteristics and Behavior of Azoxystrobin in Ginseng by Cultivation Conditions (인삼 중 azoxystrobin의 재배방법별 잔류특성 및 행적)

  • Lee, Jae Yun;Noh, Hyun Ho;Park, Hyo Kyoung;Kim, Jin Chan;Jeong, Hye Rim;Jin, Me Jee;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • To determine residual characteristics of azoxystrobin in ginseng under different cultivation conditions such as use of straw mat on cultivation soil and filling gap between ginseng stem and soil surface and also to elucidate its approximate behavior after spraying, 20% azoxystrobin suspension concentrate solution was sprayed 4 times onto 5-year-old ginseng with 10 days interval at a application rate of about 200 L/10 a and then residues in samples were analyzed. The residue level was lower in case of use of straw mat and filling the gap with soil than in case of no use of straw mat and no filling the gap, representing that use of straw mat and filling the gap with soil were contributed to decrease of pesticide residues in ginseng. A large portion of the test pesticide distributed onto ginseng leaf with a higher specific surface area. The amounts of azoxystrobin residues decreased in ginseng leaf, while increased on soil surface, as close to harvest. About 0.1% of azoxystrobin sprayed was distributed in ginseng root and 12.7-20.4% (mean 16.6%) of azoxystrobin could be decreased for dietary intake by removing of rhizome from ginseng root before intake.

A Study on the Current Status of Mountain-Grown Ginseng

  • Im, Byung-Ok
    • Korean Journal of Plant Resources
    • /
    • v.24 no.6
    • /
    • pp.733-740
    • /
    • 2011
  • For the current study, 2,000 questionnaire sheets were printed and distributed while at the same time postal questionnaires were also conducted. The questionnaire survey was conducted July 25 through September 25, 2008, whereby 206 copies of desirable responses were secured. Analysis of the survey made it possible to grasp the overall current status and prospects of the mountain-grown ginseng business, and the level of technology required for cultivating mountaingrown ginsengs. It was learned that, with no legal and institutional arrangements now in force, no precise facts and figures concerning the total area cultivated and the quantity produced are currently available, and that the products are being marketed under the table. Under such circumstances, it is high time for the mountain-grown ginseng cultivation business to contribute to the promotion of incomes of the farming households and the generation of national wealth by developing the business into a systematic industry. This study conducted a survey on the current status of mountain-grown ginseng producers and of their production, thereby contributing to the introduction of policies for mountain-grown ginsengs.

The Comparison of Seasonal Ginsenoside Composition Contents in Korean Wild Simulated Ginseng (Panax ginseng) which were Cultivated in Different Areas and Various Ages

  • Yang, Byung Wook;Lee, Jae Bum;Lee, Jung Min;Jo, Min Su;Byun, Jae Kyung;Kim, Hyoung Chun;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The ginsenoside content was compared with wild simulated ginseng (Panax ginseng) collected every season at 11 wild simulated ginseng plantations in Korea. As a result, the total saponin of 7 years old wild simulated ginseng showed the highest content of 4.5% in spring sampling wild simulated ginseng, 2.0% in summer sampling wild simulated ginseng, 1.2% in winter sampling wild simulated ginseng and 1.0% in autumn sampling wild simulated ginseng. And also, the total saponin of 10 years old wild simulated ginseng showed the highest content of 3.9% in spring sampling wild simulated ginseng, summer sampling wild simulated ginseng (1.8%), winter sampling wild simulated ginseng (1.6%) and autumn sampling wild simulated ginseng (0.6%). Therefore, the total saponin of spring sampling wild simulated ginseng was about 4.5 - 6.5 times higher than that of autumn sampling wild simulated ginseng regardless of cultivation period.

Growth Characteristics of Ginseng Seedling Transplanting by Self Soil Nusery, Nursery or Hydroponic Culture on Main Field (토직, 상토 및 양액육묘에 의해 생산된 묘삼의 본포 이식 후 생장특성)

  • Park, Hong Woo;Song, Jeong Ho;Kwon, Ki Bum;Lee, Ueong Ho;Son, Ho Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.238-243
    • /
    • 2017
  • Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2-year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 kg/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 cm for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.

Activities of Antioxidative Enzymes in Photobleaching of Leaves from Panax ginseng C. A. Meyer (인삼엽의 Photobleaching과 항산화효소 활성)

  • 양덕조;이성종
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.139-143
    • /
    • 1991
  • This study investigated the relations between the photosynthetic rate and the activities of antioxidatile enzymes, glutathione reductase, ascorbate free radical reductase, ascorbate peroxidase, glutathione peroxidase, and ascorbate oxidase, in the leaves of Panax ginseng. Under the normal cultivation condition, Panax in showed lower g1utathione reductase and ascorbate free radical reductase activities the Glycine max. But P ginseng showed higher 91utathione Peroxidase, ascorbate Peroxidase, and ascorbate oxidase activities than C. Panax. Therefore, P. ginseng showed weak activities of reductases for the reduction of the oxidized antioxidants. Under the light intensity of 25 KLux, the reductases showed a decrease of over 75% after 24 hours. But the peroyoxidases decreased about 40%. These results showed that the decrease of reductases acitivities was consistent with the decrease of photosynthetic rate. Therefore, we consider that the regulation of antioxidative enzymes or the application of exogenous antioxidants will be effective means for the protection of photodamage in p. ginseng.

  • PDF

Comparison of Ginsenoside and Phenolic Ingredient Contents in Hydroponically-cultivated Ginseng Leaves, Fruits, and Roots

  • Choi, Sang-Yoon;Cho, Chang-Won;Lee, Yeon-Mi;Kim, Sung-Soo;Lee, Sang-Hee;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.425-429
    • /
    • 2012
  • In this study, hydroponically-cultivated ginseng leaves, fruits, and roots were respectively extracted with ethanol. The contents of 12 ginsenosides and three phenolics in the extracts were quantitatively analyzed and the free radical scavenging activities were measured and compared. Hydroponically-cultivated ginseng leaves contained higher levels of gensenosides (Rg1, Rg2+Rh1, Rd, and Rg3) and p-coumaric acid than the other parts of the ginseng plants. The 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid radical scavenging activities of leaves were also the highest. Accordingly, hydroponically-grown ginseng leaves were shown to hold promise for use as an environmentally-friendly natural anti-oxidant.

Chemical and Pharmacological Studies of Saponins with a Focus on American Ginseng

  • Yuan, Chun-Su;Wang, Chong-Zhi;Wicks, Sheila M.;Qi, Lian-Wen
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.160-167
    • /
    • 2010
  • Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) are the two most recognized ginseng botanicals. It is believed that the ginseng saponins called ginsenosides are the major active constituents in both ginsengs. Although American ginseng is not as extensively studied as Asian ginseng, it is one of the best selling herbs in the US, and has garnered increasing attention from scientists in recent years. In this article, after a brief introduction of the distribution and cultivation of American ginseng, we discuss chemical analysis of saponins from these two ginsengs, i.e., their similarities and differences. Subsequently, we review pharmacological effects of the saponins, including the effects on the cardiovascular system, immune system, and central nervous system as well as the anti-diabetes and anti-cancer effects. These investigations were mainly derived from American ginseng studies. We also discuss evidence suggesting that chemical modifications of ginseng saponins would be a valuable approach to develop novel compounds in drug discovery.

Breeding Process and Characteristics of Yunpoong, a New Variety of Panax ginseng C.A. Meyer (인삼 신품종 연풍의 육성경과 및 생육특성)

  • 권우생;이명구;최광태
    • Journal of Ginseng Research
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • To develop a new ginseng variety with good quality and high yielding, a lot of individual ginseng plant were selected in the farmers′ fields in 1968. Among them, a promising line, 680-98-2, has been developed through comparative cultivation of several lines selected with pure line separation from local races in Korea Ginseng & Tobacco Research Institute. Preliminary and advanced yield trials were performed for 8 years. 1) One of them was designated as KG102 and it was then registered as a new variety "Yunpoong" with the regional yield and adaptation trials for 10 years (1981-1990) on November 30, 1998 in Korea.2) For the root characters, the diameter of taproot and ratio of the taproot length to the diameter of Yunpoong were bigger and lower than those of Jakyungiong. Root yield was 27.3% higher in Yunpoong than Jakyungiong.

  • PDF