• Title/Summary/Keyword: Gimbaled System

Search Result 11, Processing Time 0.024 seconds

Design of Gimbal Hub for Smart UAV Tilt Rotor (스마트무인기 틸트로터용 짐발허브 설계)

  • Lee, Joo-Young;Kim, Jai-Moo;Lee, Myeong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.625-634
    • /
    • 2007
  • KARI SUAV program was initiated to develop a Smart Unmanned Aerial Vehicle with innovative smart technologies. SUAV is a tilt rotor aircraft of which rotor system is 3-bladed, gimbaled hub type. Several existing concepts of gimbaled hub were analyzed and compared to investigate the applicability to SUAV rotor system design. From the result of these investigations, it was concluded that a new design concept of low cost and high reliability characteristics was necessary for the rotor hub development of SUAV. The design requirements of new gimbal hub concept and the design results were presented. Also, the analysis results to verify the satisfaction of design requirements of SUAV rotor system were presented.

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF

Analysis of Line of Sight Stabilization Performance based on Direct vs. Indirect of a 2-axis Gimbaled Servo System for Millimeter Wave Seeker (밀리미터파 탐색기 2축 직구동 김발 서보 시스템의 직접 및 간접 시선안정화 성능 분석)

  • Shin, Seungchul;Lee, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1555-1561
    • /
    • 2018
  • Tracking and detecting targets by the millimeter wave seeker is affected by movement of platform. Stabilization equipments use an inertial sensor to compensate for disturbance of stabilizing gimbal or platform. In the direct line of sight stabilization system, an inertial sensor is mounted on inner gimbal to compensate the disturbance directly, so the performance is excellent and the implementation method is simple. However gimbal design requires somewhat larger volume. Since an inertial sensor is mounted on gimbal base in the indirect line of sight stabilization system, additional space of gimbal is not required for the gimbal design. However, this method does not directly compensate for the disturbance of the line of sight stabilization axis, which can degrade performance. In order to perform the tracking performance, two methods are analyzed for line of sight stabilization performance based on direct and indirect of a 2-axis gimbaled servo system for millimeter wave seeker in this study. The simulation and experimental results validate the performance comparison of two methods.

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Designing Passive-Type Radar Reflector for Small Ship

  • Yim, Jeong-Bin;Kim, Woo-Suk;Ahn, Yoeng-Sub;Park, Sung-Hyeon;Jung, Jung-Sik;Lee, Kyu-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.125-134
    • /
    • 2003
  • This paper describes on the design of Passive-type Radar Reflector for small Ship (PRR-S) based on the newly revised 2000 SOLAS regulations. The design idea, adopted in the study, is to hold PRR-S in the proper ‘catch rain’ position to avoid fluctuations of Radar Cross Section (RCS) due to ship's heeling. The PRR-S consists of octahedral-type radar reflector with circular plates and three-axis gimbaled stabilizer with weight on the bottom of outer gimbal ring. Performance test for the PRR is carried out in an anechoic chamber. The test results show that the reflected radar signal from PRR-S is more uniformly distributed than the reference model (Davis Echomaster).

  • PDF

Pitch Angle Rigging, Tracking and Balancing of Smart UAV Rotor System (스마트무인기 로터 피치각 리깅, 트랙킹 및 밸런싱)

  • Lee, Myeong Kyu;Kim, Yusin;Choi, Seong Wook
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2009
  • KARI SUAV (Smart Unmanned Aerial Vehicle) program is currently on the phase of ground and flight test. SUAV is a tilt rotor aircraft having the capability of vertical take-off/landing and high speed forward flight. The SUAV rotor system is 3-bladed, gimbaled hub type, which is not common for conventional helicopter configuration. In this paper, detailed procedure and method of rotor pitch rigging, tracking and balancing were described based on the experience of SUAV ground test.

  • PDF

Design of the Step-stare Image Gathering System for an Aerial Reconnaissance (항공 정찰용 Step-stare 영상획득 시스템 설계)

  • Baek, Woonhyuk;Park, Jaeyoung;Ahn, Junghun;Lee, Jungsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.813-820
    • /
    • 2014
  • This paper presents design and performance validation of a method for motion compensation using fast steering mirror. First of all, the schematics of the Electro Optical/Infra-Red (EO/IR) and step-stare image gathering system for an aerial reconnaissance are introduced. Because of the steering mirror with low inertia so called Back scan mechanism (BSM), the fast step-stare image gathering technique that is required for taking a high-definition still image will be realized. After then, the BSM hardware includes motors and feedback sensors are introduced. Also, the motion profile for BSM will be designed to compensate roll scan motion of the gimbals. At the end of this paper, designed profile and tracking performance of the EO/IR system with BSM will be validated through experiments.

A Control for 2-axis Gimbaled Millimeter Wave Seeker using Space Vector PWM of PMSM (영구 자석형 동기전동기의 공간전압벡터 PWM 기법을 적용한 밀리미터 웨이브 탐색기 2축 김발 구동 제어)

  • Lee, Sung-Yong;Lee, Jung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2386-2391
    • /
    • 2011
  • Tracking and detecting targets by the millimeter wave seeker is affected by moving of platform. In order to perform the tracking performance, stabilization of a millimeter wave seeker which consists of 2-axis gimbals was considered in this study. The feasibility of the analysis and the 2-axis gimbal servo system modeling design were verified along with some simulation results.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.