• Title/Summary/Keyword: Gibbs constant

Search Result 54, Processing Time 0.028 seconds

Molecular Area and Interfacial Tension Behavior of Span 20 and Tween series surfactants at water/air interface (Span 20과 Tween계 계면활성제의 물/공기 계면에서의 분자면적과 계면장력 거동)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.7
    • /
    • pp.1065-1072
    • /
    • 2000
  • The molecular areas and the interfacial tension behavior of ten nonionic surfactants, i.e., Span 20 and Tween 20, 40, 60. 80, 21, 61, 81, 65, & 85 are tested to assay their effects on the wetting and liquid retention properties of hydrophilic and hydrophobic fibrous materials. The molecular areas at water/air interface are derived from Gibbs’adsorption equations. The following conclusions are drawn from the results: 1) Span 20 is efficient in lowering the interfacial tension and effective in adsorption at the water/air interface, resulting in the low interfacial tension at critical micelle concentration (${\gamma}$$_{CMC}$) and a small molecular area($\omega$), 2) when the hydrophiles of the surfactants are constant, $\omega$’s increase as hydrophobe carbon numbers of the surfactants increase, 3) when the hydrophobes are constant, ${\gamma}$$_{CMC}$’s and $\omega$’s increase as the hydrophile ethylene oxide units increase, indicating effectiveness and efficiency is parallel in this case, 4) the ethylene oxide unit length as a hydrophile has greater influence on u than the hydrophobe chain length.han the hydrophobe chain length.gth.

  • PDF

Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coal Based Granular Activated Carbon (석탄계 입상 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.210-216
    • /
    • 2015
  • Adsorption of brilliant blue FCF dye using coal based the granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Temkin models. The results indicate that Freundlich model provides the best correlation of the experimental data. Base on the estimated Freundlich constant (1/n = 0.129~0.212), this process could be employed as an effective treatment method. Adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could describe well the adsorption kinetics. The negative Gibbs free energy value (-4.81~-10.33 kJ/mol) and positive enthalpy value (+78.59 kJ/mol) indicated that the adsorption was a spontaneous and endothermic process.

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coconut Shell Based Activated Carbon (야자계 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.309-314
    • /
    • 2015
  • Adsorption of brilliant blue FCF dye from aqueous solution using coconut shell based activated carbon was investigated. Batch experiments were carried out as function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir and Freundlich model. The results indicate that Freundlich model provides the best correlation of the experimental data. Base on the estimated Freundlich constant (1/n=0.129~0.212), this process could be employed as effective treatment method. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy value (-4.81~-10.33 kJ/mol) and positive enthalpy value (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering (전기 전도도 및 광산란법에 의한 나트륨 도데카노에이트와 나트륨 옥타노에이트의 혼합미셀화 연구)

  • Park, Il Hyun;Jang, Han Woong;Baek, Seung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.271-279
    • /
    • 2015
  • The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon (활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.255-261
    • /
    • 2016
  • Adsorption experiments of Acid Yellow 14 dye using activated carbon were carried out as function of adsorbent dose, pH, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherm model. The experimental data were best represented by Freundlich isotherm model. Base on the estimated Freundlich constant (1/n=0.129~0.212) and Langmuir separation factor ($R_L=0.202{\sim}0.243$), this process could be employed as effective treatment method. The heat of adsorption of Temkin isotherm model was 5.101~9.164 J/mol indicated that the adsorption process followed a physical adsorption. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy (-4.81~-10.33 kJ/mol) and positive enthalpy (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon (입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.