• Title/Summary/Keyword: Geostationary Orbit

Search Result 259, Processing Time 0.029 seconds

THE ORBIT DETERMINATION TECHNIQUE OF GEOSTATIONARY SATELLITE USING STAR SENSING FUNCTION OF THE METEOROLOGICAL IMAGER

  • Kim Bang-Yeop;Yoon Jae-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.694-697
    • /
    • 2005
  • A conceptual study about the angle information based orbit determination technique for a geostationary satellite was performed. With an assumption that the simultaneous observing of the earth and nearby stars is possible, we confirmed that the view angles between the earth and stars can be use as inputs for orbit determination process. By the MA TLAB simulation with least square method, the convergence is confirmed. This conceptual study was performed with the COMS for instance. This technique will be able to use as a back-up of ground station's orbit determination or a part of autonomous satellite operation.

  • PDF

GEO-KOMPSAT-2 LAE Burn Plan in Supersynchronous Transfer Orbit (정지궤도복합위성의 SSTO 액체원지점엔진 점화계획)

  • Park, Bong-Kyu;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • GEO-KOMPSAT-2 which is under development by KARI to be launched in 2018 is expected to be injected into its orbit through the standard GTO(Geostationary Transfer Orbit) or SSTO(Supersynchronous Transfer Orbit). While the standard GTO mission has been applied for the most of the geostationary satellites, the SSTO mission is rare case and significantly different from the standard GTO mission in technical point of view. This paper lists the operational constraints to be applied for GEO-KOMPSAT-2 SSTO mission, and introduces a preliminary LAE burn plan for GEO-KOMPSAT-2 mission. In order to evaluate the developed plan, a simulation study has been performed considering ground station visibility.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

A Study on the Application of a Fully Electric Propulsion System for Geostationary Missions (정지궤도위성의 완전 전기추진시스템 적용방안 연구)

  • Choi, Jaedong;Park, Bongkyu
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.26-34
    • /
    • 2022
  • The propulsion system of geostationary orbiting satellites is typically used to raise the orbit into a transfer orbit, maintain the orbital position in the south/north, east/west direction in regular operation, and accumulate momentum in the south/north and east/west direction. Recently, when an electric propulsion system is used in a geostationary orbit satellite, the payload capacity can be increased by about 40% compared to a chemical propulsion system. However, despite these advantages, using an electric propulsion system has several limitations that should apply to all geostationary orbiting satellites. This paper discusses the operational constraints to consider when developing an indigenous geostationary satellite using a fully electric propulsion, radiation exposure, and control mechanism design due to unit displacement and floating ground-design. A high-voltage control unit for electric drives were analyzed.

A Calculation of the Cosmic Radiation Dose of a Semiconductor in a Geostationary Orbit Satellite Depending on the Shield Thickness (차폐체 두께에 따른 정지궤도위성용 반도체의 우주방사선 피폭 계산)

  • Heo, Jeong-Hwan;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.476-483
    • /
    • 2009
  • Cosmic ray is composed of nuclear particles moving at a light speed. The cosmic ray affects the performance and the reliability of semiconductor devices by ionizing the semiconductor material. In this study, the radiation effects of protons, electrons, and photons, which compose the cosmic ray, on the GOS(Geostationary Orbit Satellite) were evaluated using the Monte-Carlo N-Particle code. The GOS was chosen due to the comparatively long exposure to the cosmic ray as it stays in the geostationary orbit more than 10 years. As the absorbed dose of semiconductor from electrons is much larger than those of protons, photons, and the secondary radiation, most of the radiation exposure of the semiconductors in the GOS results from that of electrons. When we compare the calculated absorbed dose with the radio-resistance of semiconductor, the Intel 486 of the Intel company is not suitable for the GOS applications due to its low radio-resistance. However RH3000-20 of MIPS and Motorola 602/603e can be applied to the Satellite when the aluminium shield is thicker than 3 mm.

ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF A GEOSTATIONARY SATELLITE (정지궤도위성의 해양관측센서 임무 궤도 열해석)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.135-141
    • /
    • 2009
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. According to the results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature is found slightly out its specification, therefore further detailed analyses should be continued on this element.

  • PDF

Electrical Power Subsystem Performance Evaluation of the GEO Satellite (정지궤도위성 전력계 성능 평가)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • The satellite on geostationary orbit accommodates multiple payloads into a single spacecraft platform and launched in June 26, 2010. The Electrical Power Subsystem provides a fully regulated power bus at $50V_{DC}$ in sunlight and eclipse conditions. The electrical power required to the satellite is generated by a solar array wing and the energy is stored by a Li-Ion battery with a capacity of 192.5Ah. This paper selects the main design parameters, compares and analyzes with the results at ground test and in orbit operation to apply this performance evaluation of the Electrical Power Subsystem to next satellite design on geostationary orbit. The Electrical Power Subsystem is demonstrated nominal behavior without significant degradation through the performance evaluation from design to in orbit operation.

Simulation Study on GEO-KOMPSAT Operational Orbit Injection (정지궤도 복합위성 운용궤도 진입과정 시뮬레이션 연구)

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2011
  • After launch, in order to inject the geostationary satellite into its operational orbit, the perigee altitude are forced to be raised to geostationary altitude by firing onboard LAE(Liquid Apogee Engine) at apogee of the transfer orbit. In this process, the LAE burn is divided into three or four separated burns in order to control the orbit very precisely by giving feedback the determined orbit informations and to inject the satellite in predefined longitude. This paper proposes an algorithm to determine LAE firing time slots and ${\Delta}V$ vectors under assumption of impulsive LAE burning, and additionally, a method to compensate errors induced by continuous burning. And computer simulations have been performed to validate proposed algorithms.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

Analysis of Precise Orbit Determination of the KARISMA Using Optical Tracking Data of a Geostationary Satellite (정지궤도위성의 광학 관측데이터를 이용한 KARISMA의 정밀궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.661-673
    • /
    • 2014
  • In this paper, a precise orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute), in which optical tracking data of a geostationary satellite was used. The real optical tracking data provided by ESA(European Space Agency) for the ARTEMIS geostationary satellite was used. And orbit determination error was approximately 420 m compared to that of the ESA's orbit determination result from the same optical tracking data. In addition, orbit prediction was conducted based on the orbit determination result with optical tracking data for 4 days, and the position error for the orbit prediction during 3 days was approximately 500~600 m compared to that of ESA's result. These results imply that the performance of the KARISMA's orbit determination function is suitable to apply to the collision risk assessment for the space debris.