• Title/Summary/Keyword: Geometry Transformation

Search Result 156, Processing Time 0.024 seconds

3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene, A New Phenanthrene from Bulbophyllum Odoratissimum (Bulbophyllum Odoratissimum에서 추출한 새로운 페난트렌, 3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene)

  • Chen, Ye-Gao;Xu, Jun-Ju;Yu, Hong;Qing, Chen;Zhang, Yan-Li;Liu, Ying;Wang, Ji-Hua
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.352-355
    • /
    • 2007
  • A new phenanthrene derivative 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene was isolated from the all plant of Bulbophyllum odoratissimum, and its structure was elucidated by extensive spectral studies and chemical transformation. The compound displayed cytotoxicity against the growth of human leukemia cell lines K562 and HL-60, human lung adenocarcinoma A549, human hepatoma BEL-7402 and human stomach cancer cell lines SGC-7901 with IC50 values of 14.23, 10.02, 3.42, 15.36 and 1.13 mg/ml respectively.

Design of an Effective Bump Mapping Hardware Architecture Using Angular Operation (각 연산을 이용한 효과적인 범프 매핑 하드웨어 구조 설계)

  • 이승기;박우찬;김상덕;한탁돈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.663-674
    • /
    • 2003
  • Bump mapping is a technique that represents the detailed parts of the object surface, such as a perturberance of the skin of a peanut, using the geometry mapping without complex modeling. However, the hardware implementation for bump mapping is considerable, because a large amount of per pixel computation, including the normal vector shading, is required. In this paper, we propose a new bump mapping algorithm using the polar coordinate system and its hardware architecture. Compared with other existing architectures, our approach performs bump mapping effectively by using a new vector rotation method for transformation into the reference space and minimizing illumination calculation. Consequently, our proposed architecture reduces a large amount of computation and hardware requirements.

Generation of 3D Campus Models using Multi-Sensor Data (다중센서데이터를 이용한 캠퍼스 3차원 모델의 구축)

  • Choi Kyoung-Ah;Kang Moon-Kwon;Shin Hyo-Sung;Lee Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.205-210
    • /
    • 2006
  • With the development of recent technology such as telematics, LBS, and ubiquitous, the applications of 3D GIS are rapidly increased. As 3D GIS is mainly based on urban models consisting of the realistic digital models of the objects existing in an urban area, demands for urban models and its continuous update is expected to be drastically increased. The purpose of this study is thus to propose more efficient and precise methods to construct urban models with its experimental verification. Applying the proposed methods, the terrain and sophisticated building models are constructed for the area of $270,600m^2$ with 23 buildings in the University of Seoul. For the terrain models, airborne imagery and LIDAR data is used, while the ground imagery is mainly used for the building models. It is found that the generated models reflect the correct geometry of the buildings and terrain surface. The textures of building surfaces, generated automatically using the projective transformation however, are not well-constructed because of being blotted out and shaded by objects such as trees, near buildings, and other obstacles. Consequently, the algorithms on the texture extraction should be improved to construct more realistic 3D models. Furthermore, the inside of buildings should be modeled for various potential applications in the future.

  • PDF

A mathematical model of blood flow and convective diffusion processes in constricted bifurcated arteries

  • Chakravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.51-65
    • /
    • 2006
  • Of concern in the present theoretical investigation is the study of blood flow and convection-dominated diffusion processes in a model bifurcated artery under stenotic conditions. The geometry of the bifurcated arterial segment having constrictions in both the parent and its daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is constructed mathematically with the introduction of suitable curvatures at the lateral junction and the flow divider. The streaming blood contained in the bifurcated artery is treated to be Newtonian. The flow dynamical analysis applies the two-dimensional unsteady incompressible nonlinear Wavier-Stokes equations for Newtonian fluid while the mass transport phenomenon is governed by the convection diffusion equation. The motion of the arterial wall and its effect on local fluid mechanics is, however, not ruled out from the present model. The main objective of this study is to demonstrate the effects of constricted flow characteristics and the wall motion on the wall shear stress, the concentration profile and on the mass transfer. The ultimate numerical solutions of the coupled flow and diffusion processes following a radial coordinate transformation are based on an appropriate finite difference technique which attain appreciable stability in both the flow phenomena and the convection-dominated diffusion processes.

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

A Study on the Configuring Process of Secondary Mathematically Gifted about the Hyperbolic Plane Tessellation Using Dynamic Geometry Software (GSP의 쌍곡원반모형을 활용한 중학교 수학영재 학생들의 쌍곡평면 테셀레이션 구성과정에 관한 연구)

  • Lew, Hee Chan;Lee, Eun Joo
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.957-973
    • /
    • 2013
  • This study analyzed Secondary Mathematically Gifted' mathematical thinking processes demonstrated from the activities. They configured regular triangle tessellations in the Non-Euclidean hyperbolic disk model. The students constructed the figure and transformation to construct the tessellation in the poincare disk. gsp file which is the dynamic geometric environmen, The students were to explore the characteristics of the hyperbolic segments, construct an equilateral triangle and inversion. In this process, a variety of strategic thinking process appeared and they recognized to the Non-Euclidean geometric system.

  • PDF

Correcting Inconsistency on the Boundary of Neighboring Maps (인접하는 수치지도 간의 경계영역 불일치 보정)

  • Kim, Won-Tae;Kim, Hak-Cheol;Li, Ki-Joune;Ahn, Byeung-Ik;Kim, Seung-Ryong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.1 s.13
    • /
    • pp.41-52
    • /
    • 1999
  • In order to correct mismatches between neighboring digital maps, the middle line method has been widely used. However, it may result in not only a corruption of the topological consistency between the objects near to boundaries but also degeneration of accuracy. In this paper, we propose two edge-matching methods to overcome the problem of the middle line method. The first method is based on the rubber sheeting, which performs an elastic transformation for the objects located around the boundaries. The second method transforms the geometry of objects by the function of the distance from the boundary. These methods have important advantages that they preserve the topology of the original maps and improve tile accuracy, compared with the previous methods.

  • PDF

Teaching Linear Algebra to High School Students

  • Choe, Young-Han
    • Research in Mathematical Education
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • University teachers of linear algebra often feel annoyed and disarmed when faced with the inability of their students to cope with concepts that they consider to be very simple. Usually, they lay the blame on the impossibility for the students to use geometrical intuition or the lack of practice in basic logic and set theory. J.-L. Dorier [(2002): Teaching Linear Algebra at University. In: T. Li (Ed.), Proceedings of the International Congress of Mathematicians (Beijing: August 20-28, 2002), Vol. III: Invited Lectures (pp. 875-884). Beijing: Higher Education Press] mentioned that the situation could not be improved substantially with the teaching of Cartesian geometry or/and logic and set theory prior to the linear algebra. In East Asian countries, science-orientated mathematics curricula of the high schools consist of calculus with many other materials. To understand differential and integral calculus efficiently or for other reasons, students have to learn a lot of content (and concepts) in linear algebra, such as ordered pairs, n-tuple numbers, planar and spatial coordinates, vectors, polynomials, matrices, etc., from an early age. The content of linear algebra is spread out from grades 7 to 12. When the high school teachers teach the content of linear algebra, however, they do not concern much about the concepts of content. With small effort, teachers can help the students to build concepts of vocabularies and languages of linear algebra.

  • PDF

A case study on high school students' mental image in the process of solving regular polyhedron problems (정다면체 문제 해결 과정에서 나타나는 고등학교 학생들의 심상에 관한 사례연구)

  • Hong, Gap Lyung;Kim, Won Kyung
    • The Mathematical Education
    • /
    • v.53 no.4
    • /
    • pp.493-507
    • /
    • 2014
  • The purpose of this study is to analyze how high school students form and interpret the mental image in the process of solving regular polyhedron problems. For this purpose, a set of problems about the regular polyhedron's vertex is developed on the base of the regular polyhedron's duality and circulation. and applied to 2 students of the 12th graders in D high school. After 2 hours of teaching and learning and another 2 hours of mental image-analysis process, the following research findings are obtained. Fisrt, a student who recorded medium high-level grade in the national scholastic test can build the dynamic image or the patten image in the process of solving regular polyhedron's vertex problems by utilizing the 3D geometry program. However, the other student who recorded low-level grade can build the concrete-pictorial image. Second, pattern image or dynamic image can help students solve the regular polyhedron's vertex problems by proper transformation of informations and the mental images while the concrete-pictorial image does not help. Hence, it is recommended that the mathematics teachers should develop teaching and learning materials about the regular polyhedron's duality and circulation and also give students suitable questions to build the various mental images.

Development of Analysis Technique for a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 가스차단기 설계 기술 개발)

  • Lee, J.C.;Oh, I.S.;Min, K.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.523-528
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multicomponent geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. The technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increases.

  • PDF