• Title/Summary/Keyword: Geometry Decomposition

Search Result 70, Processing Time 0.023 seconds

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

CAUCHY DECOMPOSITION FORMULAS FOR SCHUR MODULES

  • Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 1992
  • The characteristic free representation theory of the general linear group is one of the powerful tools in the study of invariant theory, algebraic geometry, and commutative algebra. Recently the study of such representations became a popular theme. In this paper we study the representation-theoretic structures of the symmetric algebra and the exterior algebra over a commutative ring with unity 1.

  • PDF

Thermodynamic properties and structural geometry of KMgCl3·6H2O single crystals

  • Yoon, Hyo In;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.119-123
    • /
    • 2015
  • The thermodynamic properties and structural geometry of $KMgCl_3{\cdot}6H_2O$ were investigated using thermogravimetric analysis, differential scanning calorimetry, and nuclear magnetic resonance. The initial mass loss occurs around 351 K ($=T_d$), which is interpreted as the onset of partial thermal decomposition. Phase transition temperatures were found at 435 K ($=T_{C1}$) and 481 K ($=T_{C2}$). The temperature dependences of the spin-lattice relaxation time $T_1$ for the $^1H$ nucleus changes abruptly near $T_{C1}$. These changes are associated with changes in the geometry of the arrangement of octahedral water molecules.

Teaching the Derivation of Area Formulas for Polygonal Regions through Dissection-Motion-Operations (DMO): A Visual Reasoning Approach

  • Rahim, Medhat H.
    • Research in Mathematical Education
    • /
    • v.14 no.3
    • /
    • pp.195-209
    • /
    • 2010
  • Utilizing a structure of operations known as Dissection-Motion-Operations (DMO), a set of mathematics propositions or area-formulas in school mathematics will be introduced through shape-to-shape transforms. The underlying theme for DMO is problem-solving through visual reasoning and proving manipulatively or electronically vs. rote learning and memorization. Visual reasoning is the focus here where two operations that constitute DMO are utilized. One operation is known as Dissection (or Decomposition) operation that operates on a given region in 2D or 3D and dissects it into a number of subregions. The second operation is known as Motion (or Composition) operation applied on the resultant sub-regions to form a distinct area (or volume)-equivalent region. In 2D for example, DMO can transform a given polygon into a variety of new and distinct polygons each of which is area-equivalent to the original polygon (cf [Rahim, M. H. & Sawada, D. (1986). Revitalizing school geometry through Dissection-Motion Operations. Sch. Sci. Math. 86(3), 235-246] and [Rahim, M. H. & Sawada, D. (1990). The duality of qualitative and quantitative knowing in school geometry, International Journal of Mathematical Education in Science and Technology 21(2), 303-308]).

Fashion Design of Disassembly and Assembly Based on Geometrical Analysis of the Body Figure (인체 형태의 기하학적 분석에 기반한 분해와 조합의 패션디자인 개발)

  • Kyung-Jin, Lee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.26 no.1
    • /
    • pp.61-76
    • /
    • 2024
  • The purpose of this study is the development of an experimental design that aims to implement three-dimensional fashion design by observing the human body, extracting and combining geometric shapes and forms, and focusing on attempts to decompose the geometry of the human body in art history. Considering the characteristics of fashion design, which inevitably reflect human images visually, this study considered works by deriving geometric shapes and forms of the human body and focusing on decomposition and combination to apply them to fashion design. The results obtained through the development of fashion design through decomposition and combination based on geometric human body analysis are as follows. First, geometric analysis of the human body as an object of expression continues from the history of Cubism to modern fashion design. Second, the geometric shapes of the human body that appear in contemporary fashion design maximize visual effects through three-dimensional composition, emphasizing simplicity while showing originality through various expressions. Third, when exploring the geometric shapes of a moving human body, it was possible to extract a wide variety of shapes and forms through drawing and simplifying the human body's movements. Fourth, the formative method of fashion design was introduced and used for the aesthetic combination of objects for fashion design through decomposition and combination. This study was able to show unique and diverse combinations of visually concise and ordered geometric shapes in the expression of fashion design by decomposing and combining them. The significance of these geometric forms is that they can diversify formative informativeness in the expression of fashion design with modern compositional beauty.

Effects of NH4F and H2O on the Geometry of TiO2 Nanotubes (TiO2 나노튜브 형상에 미치는 NH4F와 H2O의 영향)

  • Gim, Geon-Du;Jang, Sang-Soon;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.138-145
    • /
    • 2018
  • The aim of this work is the attainment of the $TiO_2-nanotube$ photocatalytic-growth condition using anodization, whereby the $NH_4F-H_2O$ weight ratio is appropriately controlled. We fabricated the $TiO_2$ nanotubes using a two-step anodization (first step is 1 hr; second step is 30 hr) under the ambient pressure and the room temperature at 60 V in ethylene-glycol solutions to investigate the effects of the $NH_4F$(0.1,0.3,0.5wt%) and $H_2O$(1-3wt%) on the $TiO_2-nanotube$ geometry and the photocatalytic efficiency. Further, the decomposition efficiency of the methylene blue on the $TiO_2$ nanotubes by the UN radiation depended on the geometrical change of the nanotube geometry, indicating the proportionality of the decomposition efficiency to the surface area that was affected by the $NH_4F$ and $H_2O$ concentrations. As the $NH_4F$ weight was increased, the surface area initially decreased but slightly increased later, and the length consistently increased. As the $H_2O$ weight was increased, the surface area and length initially increased, but later decreased with the 3 wt% $H_2O$.

A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads

  • Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.377-387
    • /
    • 2020
  • Modern long-span floor system typically possesses low damping and low natural frequency, presenting a potential vibration sensitivity problem induced by human activities. Field test and numerical analysis methods are available to study this kind of problems, but would be inconvenient for design engineers. This paper proposes a simplified method to determine the acceleration amplitudes of long-span floor system subjected to walking or running load, which can be carried out manually. To theoretically analyze the acceleration response, the floor system is simplified as an anisotropic rectangular plate and the mode decomposition method is used. To facilitate the calculation of acceleration amplitude aP, a coefficient αwmn or αRmn is introduced, with the former depending on the geometry and support condition of floor system and the latter on the contact duration tR and natural frequency. The proposed simplified method is easy for practical use and gives safe structural designs.

Realization of Scattering Acoustic Holography using Plane-wave Decomposition (평면파 분리 방법을 이용한 산란 음향 홀로그래피의 구현 방법론)

  • Lee, Seung-Ha;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.498-501
    • /
    • 2006
  • When an object or objects, rigid or flexible, presents in incident sound field, the sound wave is scattered. This, we call, is scattered sound field. It, of course, depends on the amplitude and the direction of the incident sound field as well as the geometry and the surface impedance of the scatterer(object). This paper addresses the way to measure scattered sound field by using arbitrary incident sound wave. This means that the method can decompose the scattered field from measured sound field with respect to any magnitudes and directions of incident plane-waves.

  • PDF

Automatic Generation of Quadrilateral Meshes on Trimmed Surfaces (트림 곡면상에서 사각형 요소망의 자동 생성)

  • 김형일;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • An atomatic mesh generation scheme with unstructured quadrilateral elements on trimmed surfaces has been developed. Trimmed surfaces are often encountered in modeling of structures with complex shapes such as aircrafts, automobile structures, pressure vessels and etc. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been used. Mesh generation on trimmed surface is performed in three steps. First, trimmed surfaces with holes or cuts are transformed to th largest projection planes in which the meshes are constructed. The constructed meshes are transformed to the u-v parametric plane and then finally to the original 3D surfaces. Th exact locations of holes or cuts in projection planes are determined by the Newton-Raphson method. Sample meshes are constructed to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Decomposition-Based Simplification of Machined Part in Solid Model (볼륨분해를 이용한 절삭가공부품 솔리드 모델의 단순화)

  • Woo, Yonn-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • As 3D solid modeling has been widely used in designing products, solid models of the products are directly used in various applications such as engineering analysis and process planing. However, the fully-detailed solid models may not be necessary in some application. For example, it is often more efficient to use simplified model of part of engineering analysis. Generation of mesh for the complex original model requires a quite amount of time, and the consequence of finite element analysis may not be desirable due to small and detailed geometry in the model. In this paper, a method to simplify solid models of machined part is presented. This method decomposes the delta volume of machined part, and uses the decomposed volumes to simplify the solid model. Since this method directly recognizes the features to be removed from the final model, it is independent of not only design features of specific CAD system, but also designer's design practice of design sequences.