Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.3.138

Effects of NH4F and H2O on the Geometry of TiO2 Nanotubes  

Gim, Geon-Du (Department of Materials Science and Engineering, Hongik University)
Jang, Sang-Soon (Department of Materials Science and Engineering, Hongik University)
Kim, Heesan (Department of Materials Science and Engineering, Hongik University)
Publication Information
Corrosion Science and Technology / v.17, no.3, 2018 , pp. 138-145 More about this Journal
Abstract
The aim of this work is the attainment of the $TiO_2-nanotube$ photocatalytic-growth condition using anodization, whereby the $NH_4F-H_2O$ weight ratio is appropriately controlled. We fabricated the $TiO_2$ nanotubes using a two-step anodization (first step is 1 hr; second step is 30 hr) under the ambient pressure and the room temperature at 60 V in ethylene-glycol solutions to investigate the effects of the $NH_4F$(0.1,0.3,0.5wt%) and $H_2O$(1-3wt%) on the $TiO_2-nanotube$ geometry and the photocatalytic efficiency. Further, the decomposition efficiency of the methylene blue on the $TiO_2$ nanotubes by the UN radiation depended on the geometrical change of the nanotube geometry, indicating the proportionality of the decomposition efficiency to the surface area that was affected by the $NH_4F$ and $H_2O$ concentrations. As the $NH_4F$ weight was increased, the surface area initially decreased but slightly increased later, and the length consistently increased. As the $H_2O$ weight was increased, the surface area and length initially increased, but later decreased with the 3 wt% $H_2O$.
Keywords
$TiO_2$; Nanotube; Photocatalyst; Anodization; Ethylene glycol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.-S. Kim, Y.-S. Kim, H. I. Kim, H.-K. Seo, O-B. Yang, and H.-S. Shin, Korean Chem. Eng. Res., 44, 179 (2006).
2 J. B. and B. Zhou, Chem. Rev., 114, 10131 (2014).   DOI
3 A. Rezaee, Gh. H. Pourtaghi, A. Khavanin, R. Sarraf Mamoory, M. T. Ghaneian, and H. Godini, Iran. J. Environ. Health. Sci. Eng., 5, 305 (2008).
4 Y. Ku, Y.-C. Lee, and W.-Y. Wang, J. Hazard. Mater., 138, 350 (2006).   DOI
5 X. Pan, C. H. Chen, K. Zhu, and Z. Y. Fan, Nanotechnology, 22, 23 (2011).
6 P. Pichat, Molecules, 19, 15075 (2014).   DOI
7 M. V. Rao, K. Rajeshwar, V. R. Vernerker, and J. Dubow, J. Phys, Chem., 84, 1987 (1980).   DOI
8 J. H. Choi, H. J. Kim, Y. K. Lee, H. S. Jung, and K. S. Homg, Polym. Sci. Technol, 15, 191 (2004).
9 S. Yoriya, Ph. D. Thesis, pp. 80-82, Pennsylvania State University, Pennsylvania (2010).
10 B.G. Lee, S.E. Lee, J.W. Choi, H.-J. Oh, O. Y. Lee, and C-S. Chi, J. Kor. Inst. Met. & Mater., 46, 730 (2008).
11 P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed., 50, 2904 (2011).   DOI
12 H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Phys. Chem. C , 111, 7235 (2007).   DOI
13 G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, and C. A. Grimes, J. Mater. Res., 18, 2588 (2003).   DOI
14 V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys., 25, 1258 (1992).   DOI
15 G. E. Thompson, Thin Solid Films, 297, 192 (1997).   DOI
16 J. Siejka and C. Ortega, , ECS J. Solid State Sci. Technol, 124, 883 (1977).
17 D. D. Macdonald, J. Electrochem. Soc., 140, L27 (1993).   DOI
18 G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energ. Mater. Sol. C., 90, 2011 (2006).   DOI
19 S. Yoriya, Ph. D. Thesis, p. 75, Pennsylvania State University, Pennsylvania (2010).
20 H. Habazaki, K. Shimizu, S. Nagata, P. Skeldon, G. E. Thompson, G. C. Wood, J. Electrochem. Soc., 149, B70 (2002).   DOI
21 S. Li, G. Zhang, D. Guo, L. Yu, and W. Zhang, J. Phys. Chem. C., 113, 12759 (2009).
22 J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Angew. Chem. Int. Ed., 44, 7463 (2005).   DOI
23 J. M. Macak and P. Schmuki, Electrochim. Acta., 52, 1258 (2006).   DOI
24 K. S. Raja, T. Gandhi, and M. Misra, Electrochem. Commun., 9, 1069 (2007).   DOI
25 Y. Xue, Y. Sun, G. Wang, K. Yan, and J. Zhao, Electrochim. Acta, 155, 312 (2015).   DOI
26 Z. B. Xie and D. J. Blackwood, Electrochim. Acta, 56, 905 (2010).   DOI
27 Young Ku, Y.C.W.H., Micro Nano Lett., 7, 939 (2012).   DOI
28 Y. Q. Liang, Z. D. Cui, S. L. Zhu, and X. J. Yang, Thin Solid Films., 519, 5150 (2011).   DOI
29 J. M. Macak, H. Hilderbrand, U. Marten-Jahns, and P. Schmuki, J. Electroanal. Chem., 621, 254 (2008).   DOI
30 D. Wang, Y. Liu, B. Yu, F Zhou, and W. Liu, Chem. Mater., 21, 1198 (2009).   DOI
31 Y. Alivov, M. Pandikunta, S. Nikishin and Z. Y. Fan, Nanotechnology, 20, 6 (2009).
32 Y. L. Cheong, K. P. Beh, F. K. Yam, and Z. Hassan, Superlattice. Microst., , 94, 74 (2016).   DOI
33 S. Yoriya, Ph. D. Thesis, pp. 143-177, Pennsylvania State University, Pennsylvania (2010).
34 Fancisco Javier Quintero Cortes, How to improve adhesion between $TiO_2$ anotube/Ti substrate, https://www.researchgate.net (2015).
35 M. Naghizadeh, S. Ghannadi, H. Abdizadeh and M. R. Golobostanfard, Adv. Mater. Res., 829, 907 (2014).