• Title/Summary/Keyword: Geometrically nonlinear finite element method

Search Result 79, Processing Time 0.03 seconds

Geometrically Nonlinear Analysis of Plates Subjected to Uniaxial Compression by Finite Strip Method (일축(一軸) 압축(壓縮)을 받는 판(板)의 유한대판법(有限帶板法)에 의한 기하학적(幾何學的) 비선형(非線型) 해석(解析))

  • Lee, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.107-115
    • /
    • 1985
  • For the finite deflection analysis of plates with initial deflections subjected to uniaxial compression, the formulation of incremental finite strip method is made and has been incorporated into a computer program. A new in plane displacement function varying along the load: direction has been derived from the out-of-plane displacement function by considering the curvature of a plate. Either incremental load type analysis or incremental displacement type analysis may be selected to solve incremental equibrium equations in the program. The following results have been obtained: 1. Incremental displacement type analysis is superior to incremental load type analysis in that the former converges more rapidly than the latter. 2. The finite strip method using the new displacement function gives as accurate results as analytical method and other finite element methods.

  • PDF

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

A Study on the Post-buckling Behaviour of Single-layer Domes exposed to Fire (화재에 노출된 단층 돔의 후좌굴 거동에 관한 연구)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.139-148
    • /
    • 2019
  • The lightweight structures such as domes are particularly vulnerable when it has been subjected to high temperature induced by the fire. It is therefore crucial to predict the possible instability path of structures exposed to the fire in structural design process. In this study, the instabilities of single-layer domes is investigated by using finite element technologies with the consideration of high temperature. The material properties of members under high temperature are considered by using the reduction factors which is provided in Eurocodes 3. Some damage patterns are assumed with use of a structural unit which is symmetric in radial direction. For numerical evaluations, the geometrically nonlinear truss element is implemented and the arch-length control method is employed to trace the post-buckling behaviour of domes. From numerical results, it is found to be that a significant change of post-buckling behaviour is detected in dome structures when structural members are exposed to the fire.

Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics (기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

Mechanical Characteristic Test of Architectural ETFE Film Membrane (크기최적화 이후에 나타나는 공간구조물의 후 좌굴 거동 변화에 대한 연구)

  • Lee, Sang-Jin;Jung, Ji-Myoung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.75-82
    • /
    • 2009
  • This paper investigates the variation of post-buckling behaviours of spatial structures after sizing optimization with linear assumptions. The mathematical programming technique is used to produce the optimum member size of spatial structures against external load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of structures are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The post-buckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge difference between the post buckling behaviours of the initial and optimized structures. Therefore, the stability of optimized spatial structures with linear assumption should be throughly checked by appropriate nonlinear analysis techniques. Finally, the present numerical results are provided as benchmark test suite for future study of large spatial structures.

  • PDF

A Geometrically Nonlinear Dynamic Analysis of Shallow Circular Arches Using Total Lagrangian Formulation (Total Lagrangian 문제형성에 의한 낮은 원호아치의 동적 비선형거동 해석)

  • Kim, Yun Tae;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 1990
  • For shallow circular arches with large dynamic loading, use of linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of the shallow circular arches in which geometric nonlinearity is dominant. A program is developed for analysis of the nonlinear dynamic behavior and for evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and finite element analysis procedure is used to solve the dynamic equations of motion in which Newmark method is adopted as a time marching scheme. A shallow circular arch subject to radial step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of shallow arches are evaluated using the non-dimensional parameter. Also, the results are compared with those from linear analysis.

  • PDF

Thin-Walled Beam Model for Structural Analysis of SWATH (SWATH의 구조해석을 위한 Thin-Walled Beam 모델)

  • Sang-Gab Lee;Yoon-Sup Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.136-152
    • /
    • 1993
  • This study is intended to develop an accurate and efficient, analytical thin-walled beam model, and to analyze overall behavior of SWATH ship under repeated overloads. SWATH ship is idealized to a simple thin-walled beam of channel type. An analytical beam model is formulated by the stress component with geometrically(fully) nonlinear thin-walled beam and treated numerically by the Finite Element Method. An efficient cyclic plasticity model is also included, suitable for material nonlinear behavior under complex loading conditions. The local stress distribution can be very exactly represented and the material yielding propagation, easily traced. In addition, the local treatment of the effect of shear deformation improves the representation of deformation and shear stress distribution along the section contour. It is desirable to use the analytical thin-walled beam at initial design stage, and is needed to improve the practical thin-walled beam model advancing the current approach.

  • PDF

A Study on the Variation of Post Buckling Behaviour of 2-dimensional Shallow Arch Truss after Size Optimization (크기최적화 이후에 나타나는 2차원 얕은 아치 트러스의 후 좌굴 거동의 변화에 대한 연구)

  • Lee, Sang-Jin;Lee, In-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.107-112
    • /
    • 2008
  • This paper investigates the variation of post-buckling behaviours of 2-dimensional shallow arch type truss after sizing optimization. The mathematical programming technique is used to produce the optimum member size of 2D arch truss against a central point load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of truss are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The postbuckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge change of post-buckling behaviour between the initial structure and optimum structure. Numerical results can be used as useful information for future research of large spatial structures.

  • PDF

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF