• Title/Summary/Keyword: Geometric simulation

Search Result 666, Processing Time 0.027 seconds

Measurement Method for Geometric Errors of Ultra-precision Roll Mold Machine Tool: Simulation (초정밀 롤 금형 가공기의 기하학적 오차 측정 방법: 모의실험)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1087-1093
    • /
    • 2013
  • In this study, a measurement method of double ball-bar is proposed to measure the geometric errors of an ultra-precision roll mold machine tool. A volumetric error model of the machine tool is established to investigate the effects of the geometric errors to a radius error and a cylindricity of the roll mold. A measurement path is suggested for the geometric errors, and a ball-bar equation is derived to represent the relation between the geometric errors and a measured data of the double ball-bar. Set-up errors, which are inevitable at the double ball-bar installation, also are analyzed and are removed mathematically for the measurement accuracy. In addition, standard uncertainty of the measured geometric errors is analyzed to determine the experimental condition. Finally, the proposed method is tested and verified through simulation.

Research of Controlled Motion of Dual Fingers with Soft-Tips Grasping (Soft-Tip을 가진 Dual Finger의 파지운동제어에 관한 연구)

  • 박경택;양순용;한현용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.670-673
    • /
    • 2000
  • This paper attempt analysis and computer simulation of dynamics of a set of dual multi-joint fingers with soft-deformable tips which are grasping. Firstly, a set of differential equation describing dynamics of the fingers and object together with geometric constraint of tight area-contacts is formulated by Euler-Lagrange's formalism. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Finally, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

A Study on the 3-D CNC Cutting Planning and Simulation by Z-Map Model (Z-Map 모델을 이용한 3차원 CNC 가공계획 및 절삭시뮬레이션에 관한 연구)

  • 송수용;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.683-688
    • /
    • 1994
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

A study on the 3-D CNC cutting planning and simulation by Z-Map model (Z-Map모델을 이용한 3차원 CNC가공계획 및 절삭시뮬레이션에 관한 연구)

  • Song, Soo-Yong;Kim, Seok-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.115-121
    • /
    • 1996
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

Effects of Geometric Errors on the Measurement of Error Motions of Rotor with the Cylindrical Capacitive Displacement Sensor (형상오차가 원통형 정전용량 변위센서의 축 회전오차의 측정에 미치는 영향)

  • 안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.487-490
    • /
    • 1995
  • This paper discisses the effects geometric errors on the measurement of error motions of rotor with the cylindrical capacitive displacement sensor. Analytic model of the measuring process with this sensor is derived and this model shows that the effect of geometric errors of sensor is larger than that of rator on the measurement of error motions of rotor. The computer simulation shows effect of periodic errors in this sensor on the measuring orbit.

  • PDF

Study on Evaporating Process Modeling for Estimation of Thin-film Thickness Distribution (박막두께 예측을 위한 증착 공정 모델링에 관한 연구)

  • Lee Eung-Ki;Lee Dong-Eun;Lee Sook-Han
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.156-159
    • /
    • 2006
  • In order to design an evaporation system, geometric simulation of film thickness distribution profile is required. In this paper, a geometric modeling algorithm is introduced for process simulation of the evaporating process. The physical fact of the evaporating process is modeled mathematically. Based on the developed method, the thickness of the thin-film layer can be successfully controlled.

  • PDF

Evaporation Process Modeling for Large OLED Mass-fabrication System (대면적 유기EL 양산 장비 개발을 위한 증착 공정 모델링)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.29-34
    • /
    • 2006
  • In order to design an OLED(Organic Luminescent Emitting Device) evaporation system, geometric simulation of film thickness distribution profile is required. For the OLED evaporation process, thin film thickness uniformity is of great practical importance. In this paper, a geometric modeling algorithm is introduced for process simulation of the OLED evaporating process. The physical fact of the evaporating process is modeled mathematically. Based on the developed method, the thickness of the thin-film layer can be successfully controlled.

  • PDF

Study on Geometric Simulation System of Machining Operations (절삭 가공 시뮬레이션 시스템의 개발에 관한 연구)

  • 이상규;박재민;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.869-872
    • /
    • 2003
  • This paper presents a geometric machining simulation algorithm to enhance the reliability and user-friendliness of a comprehensive computer aided process planning (CAPP) system by verifying generated NC data. In order to represent the complex machining geometry with high accuracy, the proposed algorithm is developed based on a boundary representative (B-rep) solid modelling kernel. Solid models are used to represent the part geometry. tool swept volume and material removal volume by Boolean unite and subtract operations. By integrating a machining simulation procedure into the CAPP system, the systematic analysis of the tool path can be implemented synthetically. To demonstrate and check the validity of suggested system, a simple example of simulation is represented and the result is discussed.

  • PDF

Geometric charts with bootstrap-based control limits using the Bayes estimator

  • Kim, Minji;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.65-77
    • /
    • 2020
  • Geometric charts are effective in monitoring the fraction nonconforming in high-quality processes. The in-control fraction nonconforming is unknown in most actual processes; therefore, it should be estimated using the Phase I sample. However, if the Phase I sample size is small the practitioner may not achieve the desired in-control performance because estimation errors can occur when the parameters are estimated. Therefore, in this paper, we adjust the control limits of geometric charts with the bootstrap algorithm to improve the in-control performance of charts with smaller sample sizes. The simulation results show that the adjustment with the bootstrap algorithm improves the in-control performance of geometric charts by controlling the probability that the in-control average run length has a value greater than the desired one. The out-of-control performance of geometric charts with adjusted limits is also discussed.

An Efficient and Fast Bit Allocation Algorithm for Multiuser OFDM Systems (다중 사용자 OFDM 시스템을 위한 효율적이고 빠른 비트 배정 알고리즘)

  • Kim, Min-Suk;Lee, Chang-Wook;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.218-220
    • /
    • 2004
  • Orthogonal frequency division multiplexing(OFDM) is one of the most promising technique for next generation wireless broadband communication systems. In this paper, we propose a new bit allocation algorithm in multiuser OFDM. The proposed algorithm is derived from the geometric progression of the additional transmit power of subcarriers and the arithmetic-geometric means inequality. The simulation shows that this algorithm has similar performance to the conventional adaptive bit allocation algorithm and lower computational complexity than the existing algorithms.

  • PDF