• Title/Summary/Keyword: Geometric pattern

Search Result 428, Processing Time 0.036 seconds

Seismic evaluation of RC stepped building frames using improved pushover analysis

  • Sarkar, Pradip;Prasad, A. Meher;Menon, Devdas
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.913-938
    • /
    • 2016
  • 'Stepped building' frames, with vertical geometric irregularity, are now increasingly encountered in modern urban constructions. This paper proposes a new approach to determine the lateral load pattern, considering the contributions from the higher modes, suitable for pushover analysis of stepped buildings. Also, a modification to the displacement coefficient method of ASCE/SEI 41-13 is proposed, based on nonlinear time history analysis of 78 stepped frames. When the newly proposed load pattern is combined with the modified displacement coefficient method, the target displacement for the stepped building frame is found to match consistently the displacement demand given by the time history analysis.

Leakage and Rotordynamic Analysis of Damper Floating Ring Seal with Round­Hole Surfaces in the High Pressure Turbo Pump (원형 단면 구멍 표면을 갖는 댐퍼 후로팅 링 실의 누설량 및 회전체 동역학적 특성 해석)

  • 하태웅;이용복;김창호
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.349-356
    • /
    • 2003
  • A damper floating ring seal with round hole pattern surfaces is suggested for better leakage control. The flat plate test of the round hole pattern surfaces has been performed to yield an empirical friction factor model. The exact predictions of the lock­up position of the damper floating ring, the leakage performance, and the rotordynamic coefficients of the seal are necessary to evaluate the rotordynamic performance of the turbo pump unit. The governing equations including the empirical friction factor model for round hole pattern surfaces are solved by the Fast Fourier Transform method. The lock­up position, leakage flow rate, and rotordynamic coefficients are evaluated according to the geometric parameters of the damper floating ring seal. Theoretical results show that the damper floating ring seals yield less leakage and better rotordynamic stability than the floating ring seal with a smooth surface.

Hybrid Facial Representations for Emotion Recognition

  • Yun, Woo-Han;Kim, DoHyung;Park, Chankyu;Kim, Jaehong
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1021-1028
    • /
    • 2013
  • Automatic facial expression recognition is a widely studied problem in computer vision and human-robot interaction. There has been a range of studies for representing facial descriptors for facial expression recognition. Some prominent descriptors were presented in the first facial expression recognition and analysis challenge (FERA2011). In that competition, the Local Gabor Binary Pattern Histogram Sequence descriptor showed the most powerful description capability. In this paper, we introduce hybrid facial representations for facial expression recognition, which have more powerful description capability with lower dimensionality. Our descriptors consist of a block-based descriptor and a pixel-based descriptor. The block-based descriptor represents the micro-orientation and micro-geometric structure information. The pixel-based descriptor represents texture information. We validate our descriptors on two public databases, and the results show that our descriptors perform well with a relatively low dimensionality.

Geometrical Distortion-Resilient Watermarking Based on Image Features

  • Shim, Hiuk-Jae;Byeungwoo Jeon;Kim, Rin-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1268-1271
    • /
    • 2002
  • The major threat of geometric manipulations is that they change the positions of watermarks, therefore the detection process fails to extract watermark properly. Since they cause the same effects on the host image as watermarks simultaneously, evaluating the distorted host image can be helpful to measure the nature of distortions. In this paper, we propose a geometrical distortion-resilient watermarking algorithm based on this property. Firstly we evaluate the orientation of a host image by filtering it with directional Gabor kernels, then we insert embedding pattern aligned to the estimated orientation. In its detection step, we evaluate the orientation again by Gabor filtering, then simply project and average the projected value to obtain a 1-D projection average pattern. Finally, auto-correlation function of the 1-D projection average pattern identifies periodic peaks. Analysed are experimental results against geometrical attacks including aspect ratio changes.

  • PDF

A Study on the Alternative ARL Using Generalized Geometric Distribution (일반화 기하분포를 이용한 ARL의 수정에 관한 연구)

  • 문명상
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.143-152
    • /
    • 1999
  • In Shewhart control chart, the average run length(ARL) is calculated using the mean of a conventional geometric distribution(CGD) assuming a sequence of identical and independent Bernoulli trials. In this, the success probability of CGB is the probability that any point exceeds the control limits. When the process is in-control state, there is no problem in the above assumption since the probability that any point exceeds the control limits does not change if the in-control state continues. However, if the out-of-control state begins and continues during the process, the probability of exceeding the control limits may take two forms. First, once the out-of-control state begins with exceeding probability p, it continues with the same exceeding probability p. Second, after the out-of-control state begins, the exceeding probabilities may very according to some pattern. In the first case, ARL is the mean of CGD with success probability p as usual. But in the second case, the assumption of a sequence of identical and independent Bernoulli trials is invalid and we can not use the mean of CGD as ARL. This paper concentrate on that point. By adopting one generalized binomial distribution(GBD) model that allows correlated Bernoulli trials, generalized geometric distribution(GGD) is defined and its mean is derived to find an alternative ARL when the process is in out-of-control state and the exceeding probabilities take the second form mentioned in the above. Small-scale simulation is performed to show how an alternative ARL works.

  • PDF

An Analysis on Sixth Graders' Recognition and Thinking of Functional Relationships - A Case Study with Geometric Growing Patterns - (초등학교 6학년 학생들의 함수적 관계 인식 및 사고 과정 분석 - 기하 패턴 탐구 상황에서의 사례연구 -)

  • Choi, JiYoung;Pang, JeongSuk
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.2
    • /
    • pp.205-225
    • /
    • 2014
  • This study analyzed how two sixth graders recognized, generalized, and represented functional relationships in exploring geometric growing patterns. The results showed that at first the students had a tendency to solve the given problem using the picture in it, but later attempted to generalize the functional relationships in exploring subsequent items. The students also represented the patterns with their own methods, which in turn had an impact on the process of generalizing and applying the patterns to a related context. Given these results, this paper includes issues and implications on how to foster functional thinking ability at the elementary school.

  • PDF

Nonlinear Analysis Method of the Reinforced Concrete Member Considering the Geometric and the Material Nonlinearities (기하비선형과 재료비선형을 동시에 고려한 철근콘크리트 부재의 비선형 해석)

  • Han, Jae-Ik;Lee, Kyung-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • The purpose of this study is to propose the nonlinear analysis method which combines the nonlinear incremental method with the layered method to solve the problems due to the geometric and the material nonlinearities. As numerical analysis models, the reinforced concrete simple beam and the steel arch frame are used to verify the algorithm of the proposed nonlinear method. The results are gotten from the computation procedures. According to the results of this study, the fracture pattern of the beam according to the ratio of tensile steel and the strength of the concrete and the steel can be estimated by the proposed method. Therefore, the load-deflection curve of structure can be, exactly, depicted by the proposed method. Also, the rupture load, the site and the depth of crack of the beam can analytically be checked by the proposed method. In this respect, the proposed method contributes for the solving the stability problem of the actual structure.

Laboratory geometric calibration simulation analysis of push-broom satellite imaging sensor

  • Reza Sh., Hafshejani;Javad, Haghshenas
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.67-82
    • /
    • 2023
  • Linear array imaging sensors are widely used in remote sensing satellites. The final products of an imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at different angles. By these images and their corresponding pinhole approximation, the correction function is extracted and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy.

Analysis of Virtual Fitting Effects of Cropped T-Shirts by Body Type for Women in Their 20s -Utilizing the Effects of Geometric Shapes- (20대 여성 체형별 크롭 티셔츠의 가상착의 효과 분석 -기하 형태 효과의 활용-)

  • Jinhua Han;Juhyun Ro
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • This study aimed to enhance the design of cropped t-shirts to improve fit satisfaction among women in their 20s by tailoring the t-shirts to diverse body types. Body types were categorized using Size Korea's 8th Human Body Measurement Data, and statistical analysis was conducted based on the Statistical Package for the Social Sciences (version 26.0). This study also reviewed the literature on t-shirts and fit, the application of pattern and design improvements for different body types, verifying fit and size for each body type, and applying virtual fit effects using geometric forms. Frequency analysis and non-parametric verification were conducted using the Friedman test. The results showed that t-shirts with a horizontal rectangular shape was an effective design and that t-shirts with an inverted triangular structure also had a positive effect. In contrast, square t-shirts exhibited minimal effectiveness. These findings are expected to contribute to the consideration of customized shapes according to body type in t-shirt design. Research on customized virtual cropped t-shirts reflecting various body types can expand fit satisfaction studies, particularly amid the increasing trend of online shopping.

Evaluation of Energy Production for a Small Wind Turbine by Considering the Geometric Shape of the Deokjeok-Do Island (덕적도 지형을 고려한 소형풍력발전기 발전량 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.629-635
    • /
    • 2014
  • This paper presents annual energy production (AEP) by a 1.5kW wind turbine due to be installed in Deokjeok-Do island. Local wind data is determined by geometric shape of Deokjeok-Do island and annual wind data from Korea Institute of Energy Research at three places considered to be installed the wind turbine. Numerical simulation using WindSim is performed to obtain flow pattern for the whole island. The length of each computation grid is 40 m, and k-e turbulence model is imposed. AEP is determined by the power curve of the wind turbine and the local wind data obtained from numerical simulation. To capture the more detailed flow pattern at the specific local region, Urumsil-maul inside the island, fine mesh having the grid length of 10m is evaluated. It is noted that the input data for numerical simulation to the local region is used the wind data obtained by the numerical results for the whole island. From the numerical analysis, it is found that a local AEP at the Urumsil-maul has almost same value of 1.72 MWh regardless the grid resolutions used in the present calculation. It is noted that relatively fine mesh used for local region is effective to understand the flow pattern clearly.