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Abstract

In Shewhart control chart, the average run length(ARL) is calculated using the
mean of a conventional geometric distribution{(CGD) assuming a sequence of
identical and independent Bernoulli trials. In this, the success probability of CGD
is the probability that any point exceeds the control limits. When the process is
in-control state, there is no problem in the above assumption since the probability
that any point exceeds the control limits does not change if the in-control state
continues. However, if the out-of-control state begins and continues during the
process, the probability of exceeding the control limits may take two forms. First,
once the out-of-control state begins with exceeding probability p, it continues with
the same exceeding probability p. Second, after the out-of-control state begins, the
exceeding probabilities may vary according to some pattern. In the first case, ARL
is the mean of CGD with success probability p as usual. But in the second case,
the assumption of a sequence of identical and independent Bernoulli trials is
invalid and we can not use the mean of CGD as ARL. This paper concentrate on
that point. By adopting one generalized binomial distribution(GBD) model that
allows correlated Bernoulli trials, generalized geometric distribution{(GGD) is
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defined and its mean is derived to find an alternative ARL when the process is in
out-of-control state and the exceeding probabilities take the second form
mentioned in the above. Small~scale simulation is performed to show how an
alternative ARL works.

1. Introduction

The ARL of the control chart is the average number of points that are to be
plotted before a point indicates an out-of-control condition, and is a way used to
evaluate the decisions regarding sample size and sampling frequency. For any
Shewhart control chart, the ARL can be calculated easily as(Montgomery, 1996)

ARL = 1/p, (1.1

from the CGD where p is the probability that any point exceeds the control limit.
The CGD assumes a sequence of identical and independent Bernoulli trials.
However, if the above assumption is turned out to be an inappropriate one, then
the ARL defined in (1.1) should be modified. The purpose of this paper is to
derive an alternative ARL when the identical and independent Bernoulli trials
assumption is not satisfied.

This paper consists of five sections. The GGD that works even when the
identical and independent Bernoulli trials assumption is inappropriate is defined in
section 2 using some previous results on GBD. In section 3, an alternative ARL is
derived from GGD by finding its mean. Simulation results that compare the usual
ARL and an alternative ARL when the identical and independent Bernoulli trials
assumption is inappropriate are provided in section 4. Final section is devoted to
some concluding remarks.

2. Generalized Geometric Distribution

Consider a sequence of identical and independent Bernoulli trials with probability
of success p. If we denote by Y the number of trials required to obtain the first
success, then it is well-known that the random variable Y follows CGD with
probability mass function(p.m.f.)
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glyip)=pa"", v=1,2,3,; qg=1—0». 2.1)

However a sequence of identical and independent Bernoulli trials assumption is not
satisfied in many cases, and then the equation (2.1) is not an appropriate p.m.f. of
Y. Examples are the attendence of a congressman at meetings, a team’'s
probability of winning at successive games, and a probability of survival of a
plant in a given area. Hence, a new generalization of the CGD that allows
dependence between trials, nonconstant success probabilities from trial to trial, and
which contains the CGD as a special case, is necessary. Many results on GBD
allowing dependence between trials and nonconstant success probabilities are
published already. See Altham(1978), Crowder(1985), Drezner & Farnum(1993),
Kupper & Haseman(1978), Madsen(1993), Moore(1987), Ng(1989) and Paul(1985,
1987). Among various models allowing correlated Bernoulli trials, Drezner &
Farnum’s one which takes account of the previous number of trials is employed in
this paper.

Let P(x,n) denote the probability of x successes in # Bernoulli trials, and
S,(F,) the event of ’'success(failure) on the #n-th trial’. Let P(S,lx, n—1)
denote the conditional probability of success on the m-th trial after x successes
among the previous % — 1 Bernoulli trials, and let’s define P(F,|x,n—1)

similarly. The model allowing correlated Bernoulli trials depends heavily on how
we define P(S,lx,n—1) and P(F,|x,n—1). Drezner and Farnum defined

them as follows so that they take account of the previous number of trials.

P(S;lx,n=1)= (1 - Op+ 027,

P(F,lx,n—1)=(1—-6(1—p+6(1— nfl), (2.2)

where p denotes the probability of success in the first trial, and @ defines the
degree of dependence between Bernoulli trials. Note that P(0,1)=1-—p and
P(1,1) = p.

Assume a sequence of correlated Bernoulli trials satisfying (2.2) and let X be

the random variable denoting the number of trials required to obtain the first
success. Then, the p.m.f. of X can be written as follows:
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fx;0) =P, x—1) P(S,10,x—1), x=1,2,3,", (2.3)

or

p, if x=1,
f(x;0) = (2.4)
H1—-pA—0{(Q1—A—-p)+ 672, if x=2,3,4, -

Define the distribution given in (2.3) and (2.4) as GGD. The resulting class of
GGD includes the CGD(when 6= () as a special case. Although (2.4) is easier to

handle, (2.3) will be adopted in this paper since it is expected that we can extend
the present GGD result to that of generalized negative binomial distribution

(GNBD) using (2.3)~type p.an.f. Furthermore, the recursive formula for the 4-th
moment of GGD can be obtained more easily if we use (2.3). The following

theorem shows that f(x;8) defined in (2.3) satisfies one condition of p.m.f.

Theorem 1. With f(x;68) given in (2.3), it follows that ;f(x;ﬁ) =1].

Proof. Let A — Zf(x;0)= ZP(O,x—l)P(SxIO,x—l). Then,

4 = gp(oyx—DP(leo,x—n
=p+ EP(O,y) P(S,. 10,5,  where x—1=3,

= p+ (1= 01— +6) 2 PO,y 1) P(S,4,10,5) ~ 501 6)
=p+{(1—O1—p)+ 8 {A+Q—p—p}—1*6(1—9).

Rearranging terms on A vyields
p(1—OA=p— (pO{1—6) (1—p) + 68} — p*0(1—6),

and we have A =1, ]
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The other condition of pmf. is 0<f(x;0)<1 for all x, and it is related to the
range of & in GGD.

Theorem 2. For (2.3) to be a proper GGD p.m.f., @ should satisfy the following:
1-1/p<6<L1.

Proof. By Theorem 1, it is sufficient to ensure that f(x;6) = (0. It requires that
PO,x—1)=0 and P(S,10,x—1)=0. We get §=1—1/p from the first one

since P(F,_1|0,x—2) is included in it. #<1 is easily derived from the second

one. Hence the result follows. ]

From Theorem 2, it is seen that negative € is allowed.

3. An Alternative ARL

In this section, the recursive formula for the £A-th moment of GGD is derived

and based on that result, an alternative ARL is suggested.

Theorem 3. Let the random variable X follow GGD with initial success

probability p and correlation related parameter @. Then, the recursive formula for

the /A-th moment of X is given as follows:

_ {—-60-—»+6} &1k in_[2%0—1 _
EB( xh = =00 5 (HECxH-(FHEGE), k=125

Proof. By definition,

E( X*) = Exkp(o,x—l)P(sxlo,x—l)

= yﬁ‘b(yﬂ)kp(o,y) P(S,4110,5), where x—1=1y,

— g‘b{g (f) yi} P(0,5) P(S,+110,)
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i
)

{gyiP(O’ﬁ P(S,:1 10,9+ p(1—p(1— 9)} +p

B

[{-00—-p+6}-

- 5|
- 5! .
35 PO.y= D P(S,110,3) + p(1=p(1-0)] + »

= (a=0a-p+6) 3 (%) B X)=24p0+ .

The result follows by rearranging the terms on E( Xk). O

Result 1. Let X be the GGD random variable defined in Theorem 3. The
expectation and variance of X is obtained as follows using Theorem 3.

_ _1=p6 - (1=00+p6)
E( X)— p(l—ﬁ)’ Var(X)— pg(l_e)g . ]

Final theorem providing an alternative ARL when the process is in out-of-control
is given in Theorem 4 using (2.2), (2.3) and Result 1.

Theorem 4. In Shewhart control chart, when the process is in-control with

probability of exceedihg control limits py, ARL(in-control)=1/p,. When the

out-of-control state begins with exceeding probability p and if it varies according

to the pattern given in (2.2), then ARL(out-of-control) = —él(l;gg)l

Proof. When the process is in—control state with probability of exceeding control

limits py, the CGD is the distribution of run length since identical - and

independent Bernoulli trials assumption is satisfied. If the out-of-control state
begins with probability of exceeding control limits p, and if it varies according
to (2.2), then the distribution of run length is GGD defined in (2.3) and the result
follows from Result 1. U]
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4. Simulation Results

When the process is in out-of-control state and probabilities of exceeding
control limits vary according to some pattern, ARL should not be defined as the
mean of CGD as usual. Particularly, if the probabilities of exceeding control limits
vary according to (2.2), then an alternative ARL presented in the previous section
should be used. An example of a process with varying probabilities of exceeding
control limits when it is in out-of-control state{that is, a process satisfying the
correlated Bernoulli trials assumption), is given below.

Example: In the manufacture of automotive engine piston rings, a critical quality
characteristic is the inside diameter of the ring. Suppose that the process is
in—control state if mean inside diameter{ = g) is 75mm. After maintaining that
mean value for some period, suppose that a problem outbreaks to a machine
related to the production of piston ring, and the out-of-control state begins at that
moment with = 75.5mm. If this mean value(=75.5) is maintained afterwards,

then the usual identical and independent Bernoulli trials assumption is appropriate
in calculating ARL(out-of-control) and CGD should be used in finding it.
However, once a problem outbreaks to the machine, it would be more reasonable

to assume that the condition of the machine getting worse. So, the value of u
may vary according to some fashion(for instance, 75.5 — 75.6 — 75.8 — -+, or

according to (2.2)). In this case, the usual identical and independent Bernoulli trials
assumption 1s not satisfied in finding ARL. Instead, the correlated Bernoulli trials
assumption is to be employed and ARL should be obtained from GGD.

In this section, small-scale simulation results are provided to compare the usual
ARL and an alternative ARL. The following values of parameters are used in

simulation.

»=10.001, 0.005, 0.010, 0.020, 0.050, 0.100, and
¢=0.010, 0.050, 0.100, 0.150, 0.200, 0.300.

For each combination of p and 8, 100 GGD random samples are generated as

follows:

Step 1. Generate Bernoulli random sample with initial success probability 2
using IMSL subroutine RNBIN.
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Step 2. If the first sample is turned out to be ’success’, stop and set
X (=GGD random variable)=1.

Step 3. If not, generate the second one with success probability P(S,[0,1)

using IMSL subroutine RNBIN again. If it is ’success’, then stop and
set X=2, otherwise generate the third one with success probability

P(S;10,2).

Step 4. Repeat Step 3-like procedure for the kA-th( k=4,5,-+) sample until the
first ’'success’ is obtained. For each one the success probability is
P(S,l0,k—1). If the first 'success’ is obtained in the A-th sample,

stop and set X= &

After 100 GGD random samples are obtained according to the above steps, usual
sample mean of them is calculated. The above simulation procedure is replicated
500 times.

Three ARL values are provided in <Table 1>. ARL(simu.) is the mean of 500
simulated ARL sample means, ARL(GGD) is obtained from Theorem 4, and
ARL(CGD) is the reciprocal of initial exceeding probability when the

-~

out-of-control state begins. The estimate of 6, 9 is also included in the table. It

is a method of moment estimator of @ and its formula is,

From the simulation results given in <Table 1>, the following conclusions can

be made.

(1) ARL(simu.) and ARL(GGD) take simular values regardless of p and 6, as
can be expected.

(2) Three ARL values included in the table are similar for all p when 6 is
relatively small(say, less than 0.010).

(3) For moderate and large 6, ARL(CGD) values are quite different from two
other ARL’s. However, for a given @, the ratio ARL(simu.)/ARL(CGD)
( = ARL(GGD)/ARL(CGD)) takes similar vales regardless of p. Hence,
whether to use ARL(GGD) or ARL(CGD) depends heavily on 68, but not on



Y Uwrsl V|EHEEE o]-8F ARLY £ g AT 151

< Table 1 > ARL values for various combinations of p and @

N 0.001 0.005 0.010 0.020 0:050 0.100

ARL(simu.) | 1,005.813 200.427 100.712 50.430 20.243 10.074
ARL(GGD) | }010.090 202.010 101.000 50.495 20.192 10.091
ARL(CGD) | 1,000 200 100 50 20 10

D 3.825E-3 |-7.327E-3 |-2.494E-3 |-1.001E-3 | 1.996E-3 |-3.500E-3
ARL(simu.) } 1,055.696 210.121 105.375 52.463 21.096 10476
ARL(GGD) | 1,052.579 210474 105.211 52.579 21.000 10.474
ARL(CGD) | 1,000 200 100 50 20 10

D 4293E-2 | 3872E-2 | 4180E-2 | 3.738E-2 | 4576E-2 | 4.012E-2

0.010

0.050

ARL(simu.) | 1,106.132 222.416 110.905 56.683 22.039 10.988
ARL(GGD) | 1,111.000 222.111 111.000 556.444 22.111 11.000

0100 ARL(CGD) | 1,000 200 100 50 20 10
D 8.664E-2 | 9.283E-2 | 8953E-2 | 9.446E-2 | 8.737E-2 | 8917E-2
ARL(simu.) § 1,176.455 236.149 117.010 58.501 23.366 11.530
ARL(GGD) | 1,176.294 235118 117.471 58.647 23.353 11.588

0150 ARL(CGD) | 1,000 200 100 50 20 10
D 1421E-1 | 1457E-1 | 1.381E-1 | 1.383E-1 | 1417E-1 | 1.364E-1

ARL(simu.) | 1,250.028 248.957 124.071 61.937 24.680 12.279
ARL(GGD) | 1,249.750 249.750 124.750 62.250 24.750 12.250
ARL(CGD) | 1,000 200 100 50 20 10

0.200

D 1920E-1 | 1.896E-1 | 1.874E-1 | 1.885E-1 | 1.881E-1 | 1.928E-1

ARL(simu,) | 1435420 | 285020 | 141827 | 70632 | 28127 | 13849
ARL(GGD) | 1428143 | 285286 | 142420 | 71000 | 28143 | 13857
0300 [ARL(CGD) || 1,000 200 100 50 20 10

2 2966E-1 | 2921E-1 | 2902E-1 | 2887E-1 | 2.926E-1 | 291761

5. Concluding Remarks

The GGD model that allows correlated Bernoulli trials is defined in this paper.
This model can be used in finding ARL in Shewhart control chart when the
process is in out-of-control state since the probabilities of exceeding control limits
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may vary according to some fashion. The recursive formula for the k-~th moment
of GGD is derived, and its mean is introduced as an alternative ARL when the
process is in out-of-control state. Simulation results show that an alternative ARL

is more effective than usual ARL when 6 is relatively large. However, it turns

out that the initial exceeding probability p does not play an important role in

comparing them.
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