• 제목/요약/키워드: Geometric kinematics

검색결과 84건 처리시간 0.028초

등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석 (Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra)

  • 김제석;지용관;박장현
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

기하학 해석을 통한 역운동학 모듈의 효과적인 구현 (An Effective Implementation of Inverse Kinematics Module through Geometric Interpretation)

  • 강종호;김경식;유관희
    • 한국게임학회 논문지
    • /
    • 제4권4호
    • /
    • pp.19-24
    • /
    • 2004
  • 본 연구에서는 수학적 지식이 요구되는 기존의 역운동학 해법을 사용하지 않고 직관력이 높은 기하학 방식의 새로운 역운동학 해법을 제시하였다. 뼈대 2개로 구성된 역운동학 모듈은 뼈대가 꺾이는 방향의 3차원 벡터만을 제공하여 수학적 지식이 없이도 역운동학의 사용이 가능했다. 본 연구에서 제시한 방법은 수학적 지식이 요구되지 않기 때문에 좀더 많은 그래픽 디자이너들이 역운동학을 쉽게 사용할 수 있을 것이다.

  • PDF

원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해 (Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF

기하학적인 방법을 이용한 3 Rotary 형식 5축 가공기의 후처리 방법 (A Post-processing Method for 3 Rotary Type 5-axis Machines using Geometric Method)

  • 윤재득;정융호;박도현
    • 한국CDE학회논문집
    • /
    • 제14권5호
    • /
    • pp.291-296
    • /
    • 2009
  • This paper presents a post-processing algorithm for 5-axis machines with three rotary axes (3R-2L type). 5-axis machining needs the postprocessor for converting cutter location (CL) data to machine control (NC) data. The existing methods for post-processing use inverse kinematics equations from for-ward kinematics. However in case of 5-axis machines with three rotary axes, the inverse kinematics equations are not induced directly since the forward kinematics equations are non-linear. In order to get the joint values from the forward kinematics equations, previous algorithms use numerical method for the post-processing, which needs searching algorithms with computation time and may result in fail. This paper proposes a geometric method for the post-processing of 3 rotary type 5-axis machines. Our algorithm has three advantages: first, it does not need establishing forward kinematics equations. Second, it is reliable method that eliminates any numerical methods for the inverse kinematics, resulting in the exact solution. Finally, the proposed algorithm can also be applied to 2R-3L type of 5-axis machines.

2단 평행기구 로봇 암의 실시간 순방향 기구학 해석 (Real-time direct kinematics of a double parallel robot arm)

  • 이민기;박근우
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.144-153
    • /
    • 1997
  • The determination of the direct kinematics of the parallel mechanism is a difficult problem but has to be solved for any practical use. This paper presents the efficient formulation of the direct kinematics for double parallel robot arm. The robot arm consists of two parallel mechanism, which generate positional and orientational motions, respectively. These motions are decoupled by a passive central axis which is composed of four revolute joints and one prismatic joint. For a set of given lengths of linear actuators, the direct kinematics will find the joint displacements of th central axis from geometric constraints in each parallel mechanism. Then the joint displacements will be converted into the position and the orientation of the end effector of the robot arm. The proposed formulation is decoupled and compacted so that it will be implemented as a real-time direct kinematics. With the proposed formulation, we analyze the motion of the double parallel robot and show its characteristics. Specially, we investigate the workspace in terms of positional space as well as orientational space.

여유자유도를 가진 3-SPS/S 병렬 메커니즘의 등각 기하대수를 이용한 기하학적 특이점 회피 (Geometric Singularity Avoidance of a 3-SPS/S Parallel Mechanism with Redundancy using Conformal Geometric Algebra)

  • 김제석;정진한;박장현
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.253-261
    • /
    • 2015
  • A parallel mechanism with redundancy can be regarded as a means for not only maximizing the benefits of parallel mechanisms but also overcoming their drawbacks. We proposed a novel parallel mechanism by eliminating an unnecessary degree of freedom of the configuration space. Because of redundancy, however, the solution for the inverse kinematics of the developed parallel mechanism is infinite. Therefore, we defined a cost function that can minimize the movement time to the target orientation and found the solution for the inverse kinematics by using a numerical method. In addition, we proposed a method for determining the boundary of the geometric singularity in order to avoid singularities.

Geometric Kinematics and Applications of a Mobile Robot

  • Kim, Dong-Sung;Kwon, Wook-Hyun;Park, Hong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.376-384
    • /
    • 2003
  • In this paper, the simple geometric kinematics of a three-wheeled holonomic mobile robot is proposed. Wheel architecture is developed for the holonomic mobile platform in order to provide omni-directional motions by three individually driven and steered wheels. Three types of basic motions are proposed for the path generation of the developed mobile robot. All paths of the mobile robot can be achieved through a combination of the proposed basic motion trajectories. The proposed method is verified through computer simulations and the developed mobile robot.

GEOMETRIC APPLICATIONS AND KINEMATICS OF UMBRELLA MATRICES

  • Mert Carboga;Yusuf Yayli
    • Korean Journal of Mathematics
    • /
    • 제31권3호
    • /
    • pp.295-303
    • /
    • 2023
  • This paper introduces a novel method for obtaining umbrella matrices, which are defined as orthogonal matrices with row sums of one, using skew-symmetric matrices and Cayley's Formula. This method is presented for the first time in this paper. We also investigate the kinematic properties and applications of umbrella matrices, demonstrating their usefulness as a tool in geometry and kinematics. Our findings provide new insights into the connections between matrix theory and geometric applications.