• Title/Summary/Keyword: Geometric errors

Search Result 347, Processing Time 0.026 seconds

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part II : Local Inspection Planning -

  • Cho, Myeong-Woo;Lee, Hong-Hee;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1358-1367
    • /
    • 2004
  • As a part II of theis research, new local inspection planning strategy is proposed in this paper based on the proposed inspection feature extraction method. In the local inspection planning stage, each feature is decomposed into its constituent geometric elements for more effective inspection planning. The local inspection planning for the decomposed features are performed to determine: (1) the suitable number of measuring points, (2) their locations, and (3) the optimum probing paths to minimize measuring errors and times. The fuzzy set theory, the Hammersley's algorithm and the TSP method are applied for the local inspection planning. Also, a new collision checking algorithm is proposed for the probe and/or probe holder based on the Z-map concept. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed methods.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

NRRO analysis of HDD spindle ball bearings using the measured geometric imperfection (실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석)

  • Kim, Young-Cheol;Choi, Sang-Kyu;Yoon, Ki-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.369-374
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Newton-Raphson method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. NRRO of a ball bearing is analyzed by using the measured waviness data. It is concluded that dominant components of radial vibrations are ${\Large}f_c\;and\;2{\Larg}f_b{\pm}{\Large}f_c$, and dominant component of axial vibrations is $2{\Large}f_b$. These are generated by the size error and the second waviness of the balls.

  • PDF

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Design of CMOS Op Amps Using Adaptive Modeling of Transistor Parameters

  • Yu, Sang-Dae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • A design paradigm using sequential geometric programming is presented to accurately design CMOS op amps with BSIM3. It is based on new adaptive modeling of transistor parameters through the operating point simulation. This has low modeling cost as well as great simplicity and high accuracy. The short-channel dc, high-frequency small-signal, and short-channel noise models are used to characterize the physical behavior of submicron devices. For low-power and low-voltage design, this paradigm is extended to op amps operating in the subthreshold region. Since the biasing and modeling errors are less than 0.25%, the characteristics of the op amps well match simulation results. In addition, small dependency of design results on initial values indicates that a designed op amp may be close to the global optimum. Finally, the design paradigm is illustrated by optimizing CMOS op amps with accurate transfer function.

NRRO Analysis of a HDD Spindle Ball Bearing using Measured Geometric Imperfection (실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석)

  • Kim, Young-Cheol;Park, Sang-Kyu;Yoon, Ki-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.341.1-341
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Runge-Kutta method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. (omitted)

  • PDF

The Application of RFM for Geometric Correction of High-Resolution Satellite Image Data (고해상도 인공위성 영상데이터의 기하보정을 위한 RFM의 적용)

  • 안기원;임환철;서두천
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • In this study, in order to discuss the geometric correction methods of high-resolution IKONOS satellite image, the existing polynomial model and RFM which is able to rectify satellite image without auxiliary data are applied to IKONOS satellite image data. Then the accuracy of ground point versus number of GCPs and each order of RFM are assessed. A numerical instability is removed by application of Tikhonov regularization method. As the results of this study, the root mean square errors of RFM is decreased more than 2 pixels in comparison with the two dimensional polynomial model.

DISCRETE TORSION AND NUMERICAL DIFFERENTIATION OF BINORMAL VECTOR FIELD OF A SPACE CURVE

  • Jeon, Myung-Jin
    • The Pure and Applied Mathematics
    • /
    • v.12 no.4 s.30
    • /
    • pp.275-287
    • /
    • 2005
  • Geometric invariants are basic tools for geometric processing and computer vision. In this paper, we give a linear approximation for the differentiation of the binormal vector field of a space curve by using the forward and backward differences of discrete binormal vectors. Two kind of discrete torsion, say, back-ward torsion $T_b$ and forward torsion $T_f$ can be defined by the dot product of the (backward and forward) discrete differentiation of binormal vectors that are linear approximations of torsion. Using Frenet formula and Taylor series expansion, we give error estimations for the discrete torsions. We also give numerical tests for a curve. Notably the average of $T_b$ and $T_f$ looks more stable in errors.

  • PDF

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARS AT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions, In this study, radiometric and geometric calibrations for RADARSAT/SAT data are tried using SGX products georeferenced as level 1. Even comparison of the near vs. far range sections of the same images requires such calibration Radiometric calibration is performed by compensating for effects of local illuminated area and incidence angle on the local backscatter, Conversion method of the pixel DNs to beta nought and sigma nought is also investigated. Finally, automatic geometric calibration based on the 4 pixels from the header file is compared to a marine chart. The errors for latitude and longitude directions are 300m and 260m, respectively. It can be concluded that the error extent is acceptable for an application to open sea and can be calibrated using a ground control point.

  • PDF

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.