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DISCRETE TORSION AND NUMERICAL DIFFERENTIATION
OF BINORMAL VECTOR FIELD OF A SPACE CURVE

MYUNGJIN JEON

ABSTRACT. Geometric invariants are basic tools for geometric processing and com-
puter vision. In this paper, we give a linear approximation for the differentiation
of the binormal vector field of a space curve by using the forward and backward
differences of discrete binormal vectors. Two kind of discrete torsion, say, back-
ward torsion 7, and forward torsion 75 can be defined by the dot product of the
(backward and forward) discrete differentiation of binormal vectors that are linear
approximations of torsion. Using Frenet formula and Taylor series expansion, we
give error estimations for the discrete torsions. We also give numerical tests for a
curve. Notably the average of 7, and 75 looks more stable in errors.

1. INTRODUCTION

For space curves in the 3-dimensional Euclidean space E3, the curvature and
torsion characterize a curve up to isometry (¢f. do Carmo [5]). So these are very
important geometric invariant in computer vision and geometric modeling. Further-
more if we have Frenet frame with curvature and torsion, then we can reconstruct
the given space curve as it is. In this context, geometric invariants are frequently
used in many applications of geometric processing and computer vision. So the ac-
curate estimation of geometric invariants of curves from its discrete approximations
are important. In many cases of computer graphics and computer vision, the space
curve is given as a polygon which is an approximation of the original curve. The
problem is how can we define the geometric invariants such as curvature and tor-
sion, tangent vector, principal normal vector, binormal vector that approximate the
original invariants.
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For the curvature approximation, many authors has been studied(Anoshkina,
Belyaev & Seidel [1], Borrelli, Cazals & Morvan [3], Coeurjolly, Serge & Laure [7),
Costa [8], Langer, Belyaev & Seidel [14] and Maltret & Daniel [17]). But the torsion
of a space curve is not yet sufficiently studied. Only some discrete definitions are
proposed. Roughly speaking, this is because the curvature is a second derivative
and the torsion is the third.

Let v be a space curve. Let —hy < —h; <0 < k1 < kg and

(1) P_3 = y(=h2), P-y = y(=h1), Po = 4(0), P, = v(k1), P2 = v(k2).

P P,

Figure 1. curve v and polygon {P_o, P_1, Py, P;, P2}

In Boutin [4], the discrete torsion at P; is defined by the height of the tetrahedron
formed by the vertices {P_1, Py, P1, P} measured from P, with normalization. In
Langer, Belyaev & Seidel [14], the torsion is approximated by the angle between
the discrete binormal vectors b; and b; that are defined by the unit normal vector
of the planes determined by the vertices P_1, Py, P, and Py, P;, P. But the
torsion is originally defined by the derivative of the binormal vector of a curve. So
the approximation of the derivative of the binormal vector field is a crucial step in
finding the discrete torsion of a space curve.

In this paper, we present linear-approximations of the derivative of the binormal
vector of a space curve. From this approximation, we define a discrete torsion that

approximates the torsion of a curve with errors of order 1.
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2. APPROXIMATION OF THE DERIVATIVE OF BINORMAL VECTOR FIELD
OF A SPACE CURVE

In this section we approximate the derivative of the binormal vector field of a
space curve.

Let P = {P_3,P_y,P,, P;, P} be a polygon in E3, then the polygon can be re-
garded as an approximation of a smooth curve 7 interpolating the polygon. Assume
the curve v is parameterized by arclength, then the Frenet apparatus t,n,b, , 7 at
P; = 4(0) are given by

t =+'(0) (tangent vector)
7"(0) -
n=——— ((principal) normal vector
e (Erenered )

b=txn (binormal vector)
k= {7"(0)]] (curvature)
7=<b/,n> (torsion)

where 7/(0) and +”(0) are the first and second derivative of the curve «, b’ is the

derivative of the binormal vector field of v at (0), || - || denotes the norm of vector,
< b’,n > is the inner product of b’, n and x denotes the cross product. The Frenet
formula is

t' = kn

n’ = -kt —7b

b’ =7n

where t’,n’, b’ are the derivatives of tangent, normal and binormal vectors at (0)
respectively. (Here we follow the convention of do Carmo [5] for the sign of torsion.)
The unit tangent vector 4/(0) can be approximated by the following vector with

errors of order 2 for i = —1,0,1. (see Jeon [9] and Langer, Belyaev & Seidel [14]).
@  m. lARL VR VRl AR
" (Rl +1ARL) IVE] T (IVEI+IAR]) AR

where V and A denote the backward and forward differences, respectively.

(3) VP, =P, ~ P, AP, =F1 - P,

The binormal vector of a curve is a unit normal vector to the osculating plane. Since

the plane defined by the three point P;_;, F;, P41 converges to the osculating plane
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of the curve v at P, as P,y — P;,P,y; — P,, the binormal and principal (resp.)

normal vectors can be approximated by the followings for i = —1,0, 1:
VP, x AP,

4 Bi=—r— d N,=B;xT;

() 7 ”VRXAB” an 1 'lx 1

In many practical situations, curves are given by discrete data such as polygons
so that we need to describe the geometric invariants by the discrete point and edge

lengths. For convenience, put

c=||P-1 = P=||, d= ||y — Po|, e=||PA ~ Rl|, f =P — A|
as in Figure 1. According to Langer, Belyaev & Seidel {14], the tangent vector and
binormal vectors can be approximated using the Taylor series expansion as follows.

d2 _ 2
Ty =t ( - %nz + —e—ug-e—m’ + 0(d, e)4)

2 1.2 :
+n (%n' — %(n" — k7%) + O(d, e)4)
de d%e — de?

_we L - ! ! 4
+b< 6/<;T+ 54 (2nr+nr)+0(d,e))

2
B_; =t (—Cd —g d kT + O(c, d)3>

c+2d A +3cd+3d® , F+cd+d K 3
_ ud d
n( 5 7t 12 T+ 18 K"T+0(C, )
c? + 4ded + 4d?
+b (1- A

72 4+ O(c, d)3>
By =t (%EK,T + O(d,'e)3>

- 20 2 2 2 .
+n(e d +de de +e ,+d +de+e iT-i—O(d,C)'B)

3 12 18 =
_2\2
+b (1 _ (11—85)—72 +0( e)3)

B; =t (— fe g— e kT + O(e, f)3)

f+2  f+3fe+3e? , fi+fe+e’w 3
& Ole,
+n< 3 T 13 T+ T KT+ (e, f)

+b (1 _ W# + O(e,f)3>

18
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where t, n and b are the original tangent, normal and binormal vectors of the curve
v at Py, respectively; (-)', (-)” denote the first and second derivatives of functions at
7(0); and O(z)* denotes the k-th order of errors with respect to .

Several kinds of technique have been developed on the numerical differentiation.
These can be classified into five categories; finite difference type, polynomial interpo-
lation type, operator type, lozenge diagrams, undetermined coefficients(cf. Chapra
& Canale [6], Khan & Ohba [10, 11, 12], Knowles & Wallace [13] and Li [16]). We
use the finite difference to obtain an approximation of the derivative of binormal
vector field.

Conventionally the divided difference is given by the finite difference(forward or
backward difference) divided by the edge length between two points.

For example, for the polygon given by equation (1), the backward and forward
divided differences of the discrete binormal vector field B_1, By, B; at P, are defined
by

By—-B_3 B1—By
da '’ e
But the differences of discrete binormal vectors are related to three edges so that

we define a discrete derivative of the binormal vectors at Py using the forward and
backward differences of discrete binormal vectors and three edge lengths.

Definition 2.1. The backward, forward and average discrete derivatives of the
binormal vector are defined by

B = 3(Bo — B_1)

ct+d+e
g/ - 3B~ Bo)
e Sl e
d+e+f

« 1
B} = 5 (B¢ + BY)

Using Taylor expansion, we can find an error estimation for B®, Bf and B% with

the derivative b’ of binormal vector field.

Theorem 2.1. The discrete derivatives B®, Bf and B® defined above are linear
approzimations of the derivative b’ of (original) binormal vector field.
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Proof. By direct computations, we have

Bl =t <gn’r + O(c, d, e)2>

—c—2d — o) K
+n<7+e c4 T'+(e6c)%'r+0(c,d,e)2>
+b (c_+_?3éi;e7_2 + O(c, d, e)z)
Bf =t (———ze—m' +0(d, e, f)2)

_ - /

+n(7'+f d+2e7_,+(f d) &'

4 6 k

d—-3e—f
6

T+ 0(d,e, f)2)

+b 2 +0(d,e, f)2>

B =t <d; em + O(c, d,e,f)2>

_ —d) K _ _
+n 7'+(f cte )’—i-'r+(f ©) +3(e d)T'+O(c,d,e,f)2
12 K 8
- 4(d —
+b (C f+12( e)T2+O(C,d,6, f)z)
Since b’ = 7n, Bg , BS and B¢ are linear approximations of b’. O

Note that the average derivative shows a symmetric feature. Incase c=d=e =
[, the linear terms in the average derivative B§ vanishes.
So in this case B is a second order approximation of the derivative b’.

3. DISCRETE TORSION
The torsion is defined as the rate of change of the binormal vector field in the

direction of principal normal vector, say, 7 = b-n.(see Belyaev [2] and do Carmo [5))
So we have to estimate the discrete normal vector N;.

Theorem 3.1. The discrete normal vector Ny is estimated by the following.
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Ny =t (-—%n’ + 0O(d, 6)2)

(5) +n (1 - %2162 - (i;_'S_eXT? +0(d, 6)2)

- dz — 2 2
+b<d e _ de+eT,_d62+de+e %T+O(d,e)2)

3 12 18

Proof. Direct computation using Frenet frame yields the expression (5).

The approximation Ty for the tangent vector is of second order, but this theorem
means that Ny is a first order approximation for normal vector. This is because By
is only a first order approximation for binormal vector b. However if d = e then the
approximation is of second order. As a result, we have a first order approximation
of the torsion.

Theorem 3.2. Define backward, forward and average discrete torsions by

(6) 7= Bf - No
1
(8) Te = 5(7‘(; + 7¢)

then 7y, 7f and 7, are linear approzimations of the torsion .

Proof. Direct computation yields

e—c—2d , (e—c)K

_ K 2
Ty = 1 T 6 KT‘I'O(C,d’e)
. _ !
Tf=T+2e+‘if dT'+(f6d)%T+O(d,€,f)2
_ _ ’ - —
emrp S metesdr  foetde=d) b0 g, s

12 K 8

Hence 7, and 7y are linear approximations for the torsion.

As the average derivative B?, the average discrete torsion 7, shows a symmetric
feature. If all edge lengths are same, i.e. ¢ = d = e = f then the linear terms of 7,
vanishes.

In this case we have a second order approximation of the torsion.
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4. EXPERIMENTAL RESULTS

In this section, we will compare the discrete torsions 73, 7y with real torsion for
Clelia curve. Clelia curve is defined by the curve on a sphere with constant % where
¢ and 0 are the longitude and colatitude(the angular distance from a pole) (cf. [18]).
For % = 1, the Clelia curve is parameterized by

v(t) = (sin(t) cos(t), sin(t) sin(t), cos(t)).
We have used Map]o Q K far ramnnitatinne tna toct the arcnracy nf tha gr\nrr)xima,tion

of torsions.

Figure 2. Clelia curve for % =1

Table 1 is the result at the point Py = 'y(g). The torsion of v at Py is 79 =
0.7352311234. P_o, P_,, P;, P, are defined by

(9) P_y = ~(tg+a—2h), P_1=~(to+a_1h)
(10) P = ’y(to -+ alh), P = ’y(to + agh)
where tg = 6/5, h=2"%i=1,...,9) and a2 = —3,a_1 — 2,a1 = 1,02 = 4.
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Table 1: Test for Clelia curve at t = 6/5, 79 = 0.7352311234

h

i)

Tf

€

¢f

1/2

0.5050585959

0.7256198368

0.2301725275

0.0096112866

1/4

0.6662899597

0.7466573200

0.0689411637

-0.0114261966

1/8

0.7125017907

0.7397827422

0.0227293327

-0.0045516188

1/16

0.7267530943

0.7369507112

0.0084780291

-0.0017195878

1/32

0.7317071721

0.7359352237

0.0035239513

-0.0007041003

1/64

0.7336505365

0.7355403745

0.0015805869

-0.0003092511

1/128

0.7345171353

0.7353486705

0.0007139881

-0.0001175471

1/256

0.7348921978

0.7353642673

0.0003389256

-0.0001331439

1/512

0.7342568226

0.7352693939

0.0009743008

-0.0000382705

Now we compute torsions at various points on 4. Table 2 and Table 3 are the

discrete torsions and errors for randomly chosen polygon P = {P;,...,Pi5} on vy

with 15 vertices.

The average of backward and forward torsion, say 7,, 3’%1, seems more stable

which is a linear approximation of the torsion. We also test for randomly chosen 23

vertices.

Table 2: Test for Clelia curve for approximating polygon

consisting of 15 vertices (torsions)
i T Ty Tf Tm
1 | 0.0000000000 |-0.1545159372 | 0.2042471103 | 0.0248655866
2 | 0.5451347114 | 0.2156853869 | 0.4944279506 | 0.3550566687
3 | 0.7377742302 | 0.5442338094 | 0.6769883035 | 0.6106110565
4 | 0.7071190254 | 0.6910401129 | 0.7140623560 | 0.7025512344
5 | 0.0617851337 | 0.7104811262 | 0.7132090612 | 0.7118450937
6 | -0.5734683856 | 0.7042182100 | 0.6648351881 | 0.6845266990
7 1-0.7412633040 | 0.6234114241 | 0.4167896813 | 0.5201005526
8 |-0.7372233558 | 0.3594184339 | 0.0021032369 | 0.1807608355
9 |-0.2950875693 | 0.0021441952 } -0.3909892653 | -0.1944225350
10 | -0.6137402982 | -0.4339878462 | -0.6069407547 | -0.5204643005
11 } -0.7341640572 | -0.6642185856 | -0.7240157046 | -0.6941171451
12 | -0.7495060512 | -0.7338109740 | -0.7267949780 | -0.7303029760
13 | -0.7321838442 | -0.6993138302 | -0.6497442551 | -0.6745290427
14 | -0.6113476374 | -0.6289597233 | -0.5091031439 | -0.5690314336
15 | -0.4225438450 | -0.4924178070 | -0.1655000669 | -0.3289589370
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Table 3: Test for Clelia curve for approximating polygon.
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consisting of 15 vertices (errors)

1 €p €f €m

1 {-0.1545159372 | 0.2042471103 | 0.0248655866
2 1-0.2373247689 | 0.0414177948 | -0.0979534871
3 ] -0.1277592624 | 0.0049952317 | -0.0613820153
4 | -0.0369659805 | -0.0139437374 | -0.0254548590
5 |-0.0395172172 | -0.0367892822 | -0.0381532497
6 | -0.0227863454 | -0.0621693673 | -0.0424778564
7 | -0.0048058481 | -0.2114275909 | -0.1081167196
8 | 0.0977521398 | -0.2595630572 | -0.0809054586
9 | 0.2972317645 | -0.0959016960 | 0.1006650343
10 | 0.1797524520 | 0.0067995435 | 0.0932759977
11| 0.0699454716 | 0.0101483526 | 0.0400469121
12 | 0.0156950772 | 0.0227110732 | 0.0192030752
13 | 0.0328700140 | 0.0824395891 | 0.0576548015
14 [ -0.0176120859 | 0.1022444935 | 0.0423162038
15 | -0.0698739620 | 0.2570437781 | 0.0935849080

Table 4: Test for Clelia curve for approxunatmg polygon
consisting of 23 vertices (torsions)

T

b

Ti

Tm

0.0000000000

-0.1453536775

0.1582897195

0.0064680210

0.2631686012

0.1572127404

0.3949378323

0.2760752864

0.5572189120

0.4065478130

0.5861343218

0.4963410674

0.6740480928

0.6055999354

0.6844177304

0.6450088329

0.7268113620

0.6914784953

0.7231588203

0.7073186578

0.7478175156

0.7314583806

0.7435990889

0.7375287347

0.7497338454

0.7440344108

0.7346480994

0.7393412551

oo ~3| & U] =] o O] |

0.7367596740

0.7308124762

0.7202214010

0.7255169386

©

0.7074953784

0.7113410189

0.6392875006

0.6753142597

[
o

0.5870007947

0.6212693065

0.4927518711

0.5570105888

[y
—

0.4228915159

0.4800423592

0.2140279182

0.3470351387

o~
[Sv]

0.0402763431

0.2065109027

-0.0708166303

0.0678471363

—
w

-0.2826166674

-0.0732440473

-0.3666046154

-0.2199243314

-t
N

-0.4690623621

-0.3708831461

-0.5384305696

-0.4546568578

—
(S

-0.6428655504

-0.5494152635

-0.6591167378

-0.6042660007

oy
(@)}

-0.7053588444

-0.6689231141

-0.7096063637

-0.6892647388

—
-3

-0.7393336656

-0.7120419967

-0.7323751379

-0.7222085674




DISCRETE TORSION AND NUMERICAL DIFFERENTIATION

18

-0.7498756890

-0.7361926196

-0.7413338435

-0.7387632316

19

-0.7457766690

-0.7389540397

-0.7229121987

-0.7309331192

20

-0.7173323610

-0.7150584019

-0.6751128187

-0.6950856104

21

-0.6519338226

-0.6681953439

0.3949378323

-0.6219391938

22

-0.5187775903

-0.5629065558

-0.3894416802

-0.4761741180

23

-0.2708050373

-0.3821068535

-0.1453453792

-0.2637261164
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Table 5: Test for Clelia curve for approximating polygon

consisting of 23 vertices (errors)

€

f

€m

-0.1453536775

0.1582897195

0.0064680210

-0.1059558608

0.1317692311

0.0129066852

-0.1506710990

0.0289154098

-0.0608778446

-0.0684481574

0.0103696376

-0.0290392599

-0.0353328667

-0.0036525417

-0.0194927042

-0.0163591350

-0.0042184267

-0.0102887809

-0.0056994346

-0.0150857460

-0.0103925903

OO0 ~3] Oy UY W j QO DND] | e

-0.0059471978

-0.0165382730

-0.0112427354

0.0038456405

-0.0682078778

-0.0321811187

0.0342685118

-0.0942489236

-0.0299902059

0.0571508433

-0.2088635977

-0.0758563772

0.1662345596

-0.1110929733

0.0275707932

0.2093726201

-0.0839879480

0.0626923360

0.0981792160

-0.0693682075

0.0144055043

0.0934502869

-0.0162511874

0.0385995497

0.0364357303

-0.0042475193

0.0160941056

0.0272916689

0.0069585277

0.0171250982

0.0136830694

0.0085418455

0.0111124574

0.0068226293

0.0228644703

0.0148435498

0.0022739591

0.0422195423

0.0222467506

-0.0162615213

0.0762507791

0.0299946288

-0.0441289655

0.1293359101

0.0426034723

-0.1113018162

0.1254596581

0.0070789209

5. CONCLUSION

In this paper, we proposed a discrete differentiation of the binormal vector field

of a discrete curve(a polygon approximating a smooth curve) which is a first order
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approximation of the original differentiation of binormal vectors. Using the discrete
differentiation of binormal vector field, we find a first order appfoximation of the
torsion of the curve in a natural way. This has an advantage on the computation
costs comparing with the torsion estimator proposed in Lewiner, Gomes Jr., Lopes
& Craizer [15]. At least we don’t need to solve a system of linear equations.

In this paper we find discrete torsions based on the discrete differentiation of
(discrete) binormal vector fields. So we can expect that the discrete curvature can
be defined in the same way and this can lead to the Frenet formula in the discrete

situations.
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