• Title/Summary/Keyword: Geometric configuration

Search Result 249, Processing Time 0.033 seconds

A NEW APPROACH FOR DESIGN AND OPTIMIZATION OF SRM WAGON WHEEL GRAIN

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.247-254
    • /
    • 2008
  • The primary objective of this research is to develop an efficient design and optimization methodology for SRM Wagon Wheel Grain and to develop of software for practical designing and optimization of Wagon Wheel grains. This work will provide a design process reference guide for engineers in the field of Solid Rocket Propulsion. Using these proposed design methods, SRM Wagon Wheel grains can be designed for various geometries, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design in least possible iterations & time. The main focus is to improve computational efficiency at various levels of the design work. These have been achieved by the following way. a. Evaluation of system requirements and design objectives. b. Development of Geometric Model of Wagon Wheel grain configuration. c. Internal ballistic performance predictions. d. Preliminary designing of the Wagon Wheel grain configuration involving various independent geometric variables. e. Optimization of the grain configuration using Sequential Quadratic Programming f. In depth analysis of the optimal results considering affects of various geometric variables on ballistic parameters and analysis of performance prediction outputs have been performed g. Development of software for design and optimization of Wagon Wheel Grain. By using these proposed design methods, SRM Wagon Wheel grains can be designed by using geometric model, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design.

  • PDF

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

On-Machine Measurement of Sculptured Surfaces Based on CAD/CAM/CAI Integration : I. Measurement Error Modeling (CAD/CAM/CAI 통합에 기초한 자유곡면의 On-Machine Measurement : I. 측정오차 모델링)

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.172-181
    • /
    • 1999
  • The objective of this research is to develop a measurement error model for sculptured surfaces in On-Machine Measurement (OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC Machining center is derived using a 4${\times}$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the scupltured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also, the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-step measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

Analysis of Hydrostatic Bulging of a Rectangular Diaphragm by Using the Energy Method (에너지법에 의한 직사각형 격막의 정수압벌징 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.684-695
    • /
    • 1992
  • The present study is concerned with the analysis of three-dimensional sheet metal forming process by the upper-bound method. For the analysis a systematic approach is necessary for the expression of geometric configuration of the deforming workpiece. In the present paper geometric configuration is constructed by three unit surfaces which are defined by sweeping the vertical section curves and boundary curve. The principal components of strain increment during the process is calculated directly from the change of geometric configuration for an arbitrary triangular element. The corresponding solution is found through optimization of the total energy consumption with respect to some parameters assumed in the velocity field and geometric profile. In order to verify the effectiveness of the present method, hydrostatic bulging of a rectangular disphragm is analyzed and the computation by the present method for the geometric shape renders the good result. From the comparison of the present results with the existing experimental results and elastic-plastic finite element solutions, good agreements have been obtained for the pressure curves, polar membrane strains and pressure distributions. The present method can thus be further applied to the analysis of other three-dimensional sheet metal forming processes.

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole (부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

Configuration Planning of an Actively Articulated Suspension to Vehicle Orientation Control on Unstructured Terrain (험지에서의 가변 휠형 무인 자율차량의 자세 제어를 위한 가변 휠의 형상 계획)

  • Lim, Kyeong-Bin;Park, Suk-Hoon;Yoon, Yong-San;Lee, Sang-Hoon;Kang, Shin-Cheon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.251-260
    • /
    • 2009
  • Hybrid locomotive UGV with actively articulated legs along with wheeled ends has high traversability to travel over rough terrain. The behavior control method was usually adapted for the controlling of the suspension configuration which determines the traversability of the UGV. In this study, we are proposing a method of configuration planning of the legs without any detail geometric data about the terrain. The terrain was estimated by the traces of each wheel and the leg configurations for the desired posture of the vehicle were set up against the constraints of the terrain. Also, an optimal leg configuration was calculated based on the quasi-static stability and power consumption, and plans for the leg behavior were made. Validity of the proposed method was checked by simulations using some off-the-shelf programs, and showed that the orientation control without geometric features of terrains and simplification of the behavior planning for obstacle negotiation were possible.

A Geometric Proof on Shortest Paths of Bounded Curvature (제한된 곡률을 갖는 최단경로에 대한 기하학적 증명)

  • Ahn, Hee-Kap;Bae, Sang-Won;Cheong, Otfried
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2007
  • A point-wise car-like robot moving in the plane changes its direction with a constraint on turning curvature. In this paper, we consider the problem of computing a shortest path of bounded curvature between a prescribed initial configuration (position and orientation) and a polygonal goal, and propose a new geometric proof showing that the shortest path is either of type CC or CS (or their substring), where C specifies a non-degenerate circular arc and S specifies a non-degenerate straight line segment. Based on the geometric property of the shortest path, the shortest path from a configuration to a polygonal goal can be computed in linear time.

A Study on the Configuration Modeling and Aerodynamic Analysis of Small Airplanes for Flight Training (교육용 소형 항공기의 형상 모델링과 공력 분석에 관한 연구)

  • Cho, Hwankee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • This paper presents comparative results of configuration modeling and aerodynamic analysis to single-engine airplanes such as C-172, SR-20, and DA40NG. The software OpenVSP was used as an airplane configuration modeling tool. OpenVSP can provide the fastest method to get three-dimensional aircraft configuration from given basic data and drawings of aircraft. Parametric design input in OpenVSP, from given aircraft geometric parameters, was applied to small airplanes mentioned. New aircraft models in this study were reversely designed to coincide with the publicly obtained dimensions of the original aircraft. The basic aerodynamic analysis of newly designed modeling aircraft was performed by the vortex lattice method. Results are shown that the similarity of aerodynamic data obtained except for the lack of DA40NG. In conclusion, the modeling process applied to this work is valuable to obtain conceptual design insight in the reverse design from the small airplanes currently in use for flight training.