DOI QR코드

DOI QR Code

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui (National Engineers School of Tunis, Department of Mechanical Engineering, LR-11-ES19Applied Mechanics and Engineering Laboratory (LR-MAI), University of Tunis El Manar) ;
  • Fayza Ayari (National Higher School of Engineers of Tunis (ENSIT), University of Tunis) ;
  • Maroua Saggar (Mechanical Laboratory of Sousse, Private Central Polytechnic School of Tunis, Centrale University) ;
  • Rachid Nasri (National Engineers School of Tunis, Department of Mechanical Engineering, LR-11-ES19Applied Mechanics and Engineering Laboratory (LR-MAI), University of Tunis El Manar)
  • Received : 2022.06.20
  • Accepted : 2024.04.03
  • Published : 2024.04.10

Abstract

This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.

Keywords

References

  1. Amini, A., Baslamisli, S.C., Ince, B., Koprubasi, K. and Solmaz, S. (2018), "Parametric investigation of a hybrid vehicle's achievable fuel economy with optimization based energy management strategy", Adv. Autom. Eng., 1(1), 105-121. https://doi.org/10.12989/aae.2018.1.1.105. 
  2. Asthana, S., Bansal, S., Jaggi, S. and Kumar, N. (2016), "A comparative study of recent advancements in the field of variable compression ratio engine technology", SAE Technical Paper. 
  3. Castaneda, E.H., Romero, C.A. and Quintero, H.F. (2018), "Synthesis of a variable stroke slider crank mechanism for a reciprocating internal combustion engine", Contemp. Eng. Sci., 11(104), 5127-5146. 
  4. Clenci, A. and Nicullescu, R. (2009), "On the compression ratio definition", The 8th International Congress ESFA, FISITA Bucuresti. 
  5. Collee, V., Constensou, C., Dubois, F. and Guilly, L. (2017), "Variable compression ratio for future emission standards", MTZ Worldwide, 78(4), 52-57. https://doi.org/10.1007/s38313-017-0003-3. 
  6. Galli, L.A. and Villalva, S.G. (2009), Maurilio De BortoliCassiani and Marco Lucio Bittencourt. 
  7. Hoeltgebaum, T. (2016), Variable Compression Ratio Engines: A Mechanism Approach. 
  8. Hoeltgebaum, T., Simoni, R. and Martins, D. (2016), "Reconfigurability of engines: A kinematic approach to variable compression ratio engines", Mech. Mach. Theory, 96, 308-322. https://doi.org/10.1016/j.mechmachtheory.2015.10.003. 
  9. https://www.mce-5.com For the MCE's gear-based VCR solution. 
  10. Itu, C., Scutaru, M.L., Pruncu, C.I. and Muntean, R. (2020), "Kinematic and dynamic response of a novel engine mechanism design driven by an oscillation arm", Appl. Sci., 10(8), 2733. https://doi.org/10.3390/app10082733. 
  11. Kwak, S.W., Shim, J.K. and Mo, Y.K. (2020), "Kinematic conceptual design of in-line four-cylinder variable compression ratio engine mechanisms considering vertical second harmonic acceleration", Appl. Sci., 10(11), 3765. https://doi.org/10.3390/app10113765. 
  12. Manescu, B., Dragomir, I., Stanescu, N.D. and Pandrea, N. (2017), "Study of the influence of geometric parameters on the displacement of piston and compression ratio for a variable compression ratio mechanism", Acta Technica NapocensisSeries: Appl. Math. Mech. Eng., 60(4), 1. 
  13. Manescu, B., Dragomir, I., Stanescu, N.D., Pandrea, N., Clenci, A. and Popa, D. (2017), "Aspects in the synthesis of a variable compression ratio mechanism", IOP Conf. Ser.: Mater. Sci. Eng., 252(1), 012075. https://doi.org/10.1088/1757-899X/252/1/012075. 
  14. Mo, Y.K., Shim, J.K., Kwak, S.W., Jo, M.S. and Park, H.S. (2020), "Type synthesis of variable compression ratio engine mechanisms", Appl. Sci., 10(18), 6574. https://doi.org/10.3390/app10186574. 
  15. Musteata, M. and Bivol, L. (2010), Le moteur VCR MCE-5. 
  16. Rabhi, V. (2006), U.S. Patent No. 7,013,849, U.S. Patent and Trademark Office, Washington, DC. 
  17. Rabhi, V., Beroff, J. and Dionnet, F. (2004), "Study of a gear-based variable compression ratio engine", No. 2004-01-2931, SAE Technical Paper. 
  18. Sakhraoui, A., Saggar, M., Ayari, F. and Nasri, R. (2024), "Kinematics modeling of the gear-based crank mechanism engine regardless of the compressions ratio variations", Scientif. Report., 14(1), 2807. https://doi.org/10.1038/s41598-024-53085-1. 
  19. SIMDRIVE 3D Documentation. Available online: http://www.contecs-engineering.de (accessed on 15March 2020). 
  20. Taylor, C.F. (1966), The Internal Combustion Engine. In theory And Practice, Volume 1, MIT Press, Cambrige, MA, USA. 
  21. Vlase, S., Danasel, C., Scutaru, M.L., Mihalcica, M. (2014), "Finite element analysis of a two-dimensional linear elastic systems with a plane "Rigid Motion"", Rom. J. Phys., 59, 476-487. 
  22. Wos, P., Balawender, K., Jakubowski, M., Kuszewski, H., Lejda, K. and Ustrzycki, A. (2012), "Design of affordable multicylinder variable compression ratio (VCR) engine for advanced combustion research purposes", SAE Technical Paper, No. 2012-01-0414. 
  23. Yang, R., Wang, N. and Xiang, J. (2022), "No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening", Struct. Eng. Mech., 81(4), 481-492. https://doi.org/10.12989/sem.2022.81.4.481.