• Title/Summary/Keyword: Geometric Flow

Search Result 596, Processing Time 0.027 seconds

The Problem of 'Bio morphism' in the works of Elizabeth Murray (엘리자베스 머레이 작품에 나타난 '바이오 형상성'에 관한 문제)

  • Park Ji-Sook
    • Journal of Science of Art and Design
    • /
    • v.4
    • /
    • pp.91-122
    • /
    • 2002
  • `Bio morphism` are constituted in paintings where the artists try to embody the elementary properties of living creature as of growth and durability. They are the most appropriate concept of painting to harmonize human being with nature closely. The formative ways of them attach great importance to both unconsciousness and desire , as well as variations or dynamics, by noticing a flow of natural senses and feelings of human being. In other words, the formative ways are based on a recognition of nature as the intrinsic force of life, with the result that aesthetics of incompleteness is embodied in images. Therefore they are clearly distinguished from that of functional, geometric images. A tendency of painting at that time, in a word, 'return to figure and expression', means a conversion into organic images like the incomplete, atypical, and biomorphic forms, while denying the mechanical or geometric. Elizabeth Murray are analyzed, for these works are remarkable in the characteristics of 'Bio morphism'. Consequently the features of organic images, that is, 'the formative acceptance of natural figures, or an informality' and 'the force of free will, or an incompleteness', could obviously be revealed. It is a type that obtains a motif out of natural figures like an animal, a plant, or the concrete figures of human being. In conclusion, this thesis is focused on not only emphasizing that 'Bio morphism' were a major tendency among the various trends of postmodern painting in the 20th century, but also analysing both the painterly formation of organic images and the structure of them. In addition to these points, it is a central aim to evoke that Bio morphism should accurately be evaluated and positioned in postmodern painting. A new recognition of 'Bio morphism' is a peculiarity of the times that reflects a cultural aspect of the present, hence it should be recognized as another way to approach the postmodern painting.

  • PDF

A Study on Development of Maritime Traffic Assessment Model (해상교통류 평가모델 개발에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.761-767
    • /
    • 2012
  • Maritime traffic assessment is important to understand the characteristics of maritime traffic and to prevent maritime accidents. The maritime traffic assessment can be calculated from the ship trajectory data observed by using AIS(Automatic Identification System). This paper developes a maritime traffic assessment tool using ship's position and speed, course, time data from ships navigating waterways. The results are represented in terms of the number of traffic quantity and traffic distribution, speed distribution, geometric collision candidates. The developed tool will contributes to advance maritime traffic safety by VTS(Vessel Traffic Services).

Thematic and geometric analysis of Bangpo beach based on UAV Remote Sensing (무인항공기반 태안반도 방포해빈의 지형분석)

  • Bae, Sungji;Yu, Jaehyung;Jeong, Yong-Sik;Yang, Dongyoon;Han, Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • High resolution aerial photographs and digital elevation models for Bangpo beach using UAV were generated in this study to analyze the thematic and geometric characteristics of coastal features. Based on 728 aerial images acquired on September 10, 2016 by the UAV, a image mosaic at 2.2 cm spatial resolution and a digital elevation model at 4.4 cm spatial resolution were developed. This study found out that Bangpo beach consisted of intertidal zone and supratidal zone. The intertidal zone can be subdivided into lower part and upper part with distinctive geomorphological characteristics. While the lower part included sand bars and ripple marks along the coastline, the cusps and sand dunes were the major coastal features of the upper part. Part of the intertidal zone was occupied by shore platform with average slope of 0.9 degree containing various sizes of gravels. The supratidal zone slanted toward ocean with berms on the surface with an interval of 15 m. These coastal features indicated the flow intensity towards to the land and tidal effect. It validated that the UAV application in coastal research was very effective analyzing to examine coastal processes.

Heat-Transfer Performance Analysis of a Multi-Channel Volumetric Air Receiver for Solar Power Tower (타워형 태양열 발전용 공기흡수기의 열전달 성능해석)

  • Jung, Eui-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.277-284
    • /
    • 2012
  • In this study, a heat-transfer performance analysis is carried out for a multi-channel volumetric air receiver for a solar power tower. On the basis of a series of reviews regarding the relevant literature, a calculation process is proposed for the prediction of the wall- and air- temperature distributions of a single channel at given geometric and input conditions. Furthermore, a unique mathematical model of the receiver effectiveness is presented through analysis of the temperature profile. The receiver is made of silicon carbide. A total of 225 square straight channels per module are molded to induce the air flow, and each channel has the dimensions of $2mm(W){\times}2mm(H){\times}0.2mm(t){\times}320mm(L)$. The heat-transfer rate, temperature distribution and effectiveness are presented according to the variation of the channel and module number under uniform irradiation and mass flow rate. The available air outlet temperature applied to the solar power tower should be over $700^{\circ}C$. This numerical model was actually used in the design of a 200 kW-level commercial solar air receiver, and the required number of modules satisfying the thermal performance could be obtained for the specified geometric and input conditions.

Incident Detection for Urban Arterial Road by Adopting Car Navigation Data (차량 궤적 데이터를 활용한 도심부 간선도로의 돌발상황 검지)

  • Kim, Tae-Uk;Bae, Sang-Hoon;Jung, Heejin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Traffic congestion cost is more likely to occur in the inner city than interregional road, and it accounts for about 63.39% of the whole. Therefore, it is important to mitigate traffic congestion of the inner city. Traffic congestion in the urban could be divided into Recurrent congestion and Non-recurrent congestion. Quick and accurate detection of Non-recurrent congestion is also important in order to relieve traffic congestion. The existing studies about incident detection have been variously conducted, however it was limited to Uninterrupted Traffic Flow Facilities such as freeway. Moreover study of incident detection on the interrupted Traffic Flow Facilities is still inadequate due to complex geometric structure such as traffic signals and intersections. Therefore, in this study, incident detection model was constructed using by Artificial Neural Network to aim at urban arterial road that is interrupted traffic flow facility. In the result of the reliability assessment, the detection rate were 46.15% and false alarm rate were 25.00%. These results have a meaning as a result of the initial study aimed at interrupted traffic flow. Furthermore, it demonstrates the possibility that Non-recurrent congestion can be detected by using car navigation data such as car navigator system device.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

A Study on the Method of Highway Hi-pass Lane Arrangement and Operation (고속도로 영업소 하이패스 차로배치 및 운영에 관한 연구)

  • Lee, Soo Beom;Lim, Joon Beom;Joo, Sung Kab
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.22-33
    • /
    • 2013
  • Currently average daily traffic using Hi-pass has increased over 3 times that of 2008 and more than half of highway traffic now uses High-pass. At this juncture, reassessment on the overall operation of Hi-pass is required to improve the safety aspect of toll booths and the flow of traffic. Although existing Hi-pass operation manual presents the methods of alignment, they do not reflect actual forms of vehicles and do not properly take the safety of toll booth and flow of the traffic into consideration. In order to compensate these problems, this study classifies highway tollbooths into two categories of mainline type and interchange type, and establishes the standard of lane alignment by traffic conflict analysis based on the types divided according to geometric structure or environment around the tollbooths. In addition, traffic flows around the tollbooths were reflected with the stage to arrange Hi-pass lanes according to the volume of traffic on the lanes for Hi-pass.

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Effects of the Geometry of Components Attached to the Drain Valve on the Performance of Water Hammer Pumps

  • Saito, Sumio;Takahashi, Masaaki;Nagata, Yoshimi;Dejima, Keita
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.367-374
    • /
    • 2011
  • Water hammer pumps can effectively use the water hammer phenomenon in long-distance pipeline networks that include pumps and allow fluid transport without drive sources, such as electric motors. The results of experiments that examined the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. In addition, a paper has also been published analyzing the water hammer phenomenon numerically by using the characteristic curve method for comparison with experimental results. However, these conventional studies have not fully evaluated the pump performance in terms of pump head and flow rate, common measures indicating the performance of pumps. Therefore, as a first stage for the understanding of water hammer pump performance in comparison with the characteristics of typical turbo pumps, the previous paper experimentally examined how the hydrodynamic characteristics were affected by the inner diameter ratio of the drive and lifting pipes, the form of the air chamber, and the angle of the drive pipe. To understand the behavior of the components attached to the valve chamber and the air chamber that affects the performance of water hammer pumps, the previous study also determined the relationship between the water hammer pump performance and temporal changes in valve chamber and air chamber pressures according to the air chamber capacity. For the geometry of components attached to the drain valve, which is another major component of water hammer pumps, this study experimentally examines how the water hammer pump performance is affected by the length of the spring and the angle of the drain pipe.

Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design

  • Zhang, Yuandong;Peng, Minjun;Xia, Genglei;Wang, Ge;Zhou, Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2107-2118
    • /
    • 2020
  • The nuclear reactor coupled with supercritical carbon dioxide (S-CO2) Brayton cycle has good prospects in generation IV reactors. Turbomachineries (turbine and compressor) are important work equipment in circulatory system, whose performances are critical to the efficiency of the energy conversion system. However, the sharp variations of S-CO2 thermophysical properties make turbomachinery performances more complex than that of traditional working fluids. Meanwhile, almost no systematic analysis has considered the effects of turbomachinery efficiency under different conditions. In this paper, an in-house code was developed to realize the geometric design and performance prediction of S-CO2 turbomachinery, and was coupled with systematic code for Brayton cycle characteristics analysis. The models and methodology adopted in calculation code were validated by experimental data. The effects of recompressed fraction, pressure and temperature on S-CO2 recompression Brayton cycle were studied based on detailed design of turbomachinery. The results demonstrate that the recompressed fraction affects the turbomachinery characteristic by changing the mass flow and effects the system performance eventually. By contrast, the turbomachinery efficiency is insensitive to variation in pressure and temperature due to almost constant mass flow. In addition, the S-CO2 thermophysical properties and the position of minimum temperature difference are significant influential factors of cyclic performance.