DOI QR코드

DOI QR Code

Heat-Transfer Performance Analysis of a Multi-Channel Volumetric Air Receiver for Solar Power Tower

타워형 태양열 발전용 공기흡수기의 열전달 성능해석

  • Jung, Eui-Guk (CAC Laboratory, Commercial Air conditioning & Energy Solution Division, LG Electronics Inc.)
  • 정의국 (LG 전자 AE 본부 CAC 연구소)
  • Received : 2011.08.25
  • Accepted : 2011.12.22
  • Published : 2012.03.01

Abstract

In this study, a heat-transfer performance analysis is carried out for a multi-channel volumetric air receiver for a solar power tower. On the basis of a series of reviews regarding the relevant literature, a calculation process is proposed for the prediction of the wall- and air- temperature distributions of a single channel at given geometric and input conditions. Furthermore, a unique mathematical model of the receiver effectiveness is presented through analysis of the temperature profile. The receiver is made of silicon carbide. A total of 225 square straight channels per module are molded to induce the air flow, and each channel has the dimensions of $2mm(W){\times}2mm(H){\times}0.2mm(t){\times}320mm(L)$. The heat-transfer rate, temperature distribution and effectiveness are presented according to the variation of the channel and module number under uniform irradiation and mass flow rate. The available air outlet temperature applied to the solar power tower should be over $700^{\circ}C$. This numerical model was actually used in the design of a 200 kW-level commercial solar air receiver, and the required number of modules satisfying the thermal performance could be obtained for the specified geometric and input conditions.

타워형 태양열 발전용 체적식 공기흡수기의 열전달 성능 해석을 수행하였다. 타당한 관련문헌에 기초하여 채널 한 개의 벽과 공기 온도분포를 지정된 기하학적 크기와 입력조건에서 예측 할 수 있는 계산과정들이 제시되었다. 더 나아가서 흡수기 유용도의 수학적 모델이 온도프로파일 해석을 통해 유일하게 제시되었다. 흡수기 재질은 실리콘 카바이드이다. 공기 흐름을 유도하는 정사각형 직선채널 크기는 $2mm(W){\times}2mm(H){\times}0.2mm(t){\times}320mm(L)$이며, 모듈 한 개에는 225 개의 채널이 성형되었다. 일정한 일사량 및 공기유량 가정하에서 채널과 모듈 수의 변화에 따른 열전달량, 온도분포 및 유용도 추이가 제시되었다. 태양열 발전에 응용하기 위해서는 흡수기 출구 공기온도가 $700^{\circ}C$ 이상에 도달하여야 한다. 본 수치모델은 200 kW 급 타워형 태양열 공기흡수기의 설계에 사용되었으며, 지정된 기하학적 조건과 입력조건에서 요구되는 열전달 성능을을 만족하는 모듈 수를 얻을 수 있었다.

Keywords

References

  1. Carotenuto, A., Ruocco, G. and Reale, F., 1991, "Heat Exchange in a Multi-Cavity Volumetric Solar Receiver," Solar Energy, Vol. 46, No. 4, pp. 241-248. https://doi.org/10.1016/0038-092X(91)90069-9
  2. Fend, Th., Pitz-Paal, R., Reutter, O., Bauer, J. and Hoffschmid, B., 2004, "Two Novel High-Porosity Materials as Volumetric Receivers for Concentrated Solar Radiation," Solar Energy Materials & Solar Cells, Vol. 84, pp. 291-304. https://doi.org/10.1016/j.solmat.2004.01.039
  3. Albanakis, C., Missirlis, D., Michailidis, N., Yakinthos, K.., Goulas, A., Omar, H., Tsipas, D. and Granier, B., 2009, "Experimental Analysis of the Pressure Drop and Heat Transfer Through Metal Foams Used as Volumetric Receivers Under Concentrated Solar Radiation," Experimental Thermal and Fluid Science, Vol. 33, pp. 246 - 252. https://doi.org/10.1016/j.expthermflusci.2008.08.007
  4. Michailidis, N., Stergioudi, F., Omar, H., Pavlidou, E., Tsipas, D. N., Albanakis, C. and Missirlis, D., 2010, "Microstructural Dharacterization of Oxide Morphologies on Ni and Inconel Foams Exposed to Concentrated Solar Radiation," Journal of Alloy and Compounds, Vol. 496, pp. 644-649. https://doi.org/10.1016/j.jallcom.2010.02.153
  5. Wu, Z., Caliot, C., Bai, F., Flamant, G., Wang, Z., Zhang, J. and Tian, C., 2010, "Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications," Applied Energy, Vol. 87, pp. 504 - 513. https://doi.org/10.1016/j.apenergy.2009.08.009
  6. Becker, M., Fend, Th., Hoffschmidt, B., Pitz-Paal, R., Reutter, O., Stamatov, V., Steven, M. and Trimis, D., 2006, "Theoretical and Numerical Investigation of Flow Stability in Porous Materials Applied as Volumetric Solar Receivers," Solar Energy, Vol. 80, pp. 1241-1248. https://doi.org/10.1016/j.solener.2005.11.006
  7. Agrafiotisa, C. C., Mavroidisa, I., Konstandopoulosa, A. G., Hoffschmidtb, B., Stobbec, P., Romerod, M. and Fernandez-Queroe, V., 2007, "Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Columetric Receivers / Collectors of Concentrated Solar Radiation," Solar Energy Materials and Solar Cells, Vol. 91, pp. 474-488. https://doi.org/10.1016/j.solmat.2006.10.021
  8. Pitz-Paal, R., Morhenne, J. and Fiebig, M., 1991, "A New Concept of a Selective Solar Receiver for High Temperature Applications," Solar Energy Materials, Vol. 24, pp. 293 - 306. https://doi.org/10.1016/0165-1633(91)90070-2
  9. Posnansky, M. and Pylkkänen, Th., 1991, "Development and Testing of a Volumetric Gas Receiver for High-Temperature Applications, Solar Energy Materials," Vol. 24, pp. 204-209. https://doi.org/10.1016/0165-1633(91)90060-X
  10. Garcia-Casals, X. and Ignacio Ajona, J. I., 1999, "The Duct Selective Volumetric Receiver: Potential for Different Selective Strategies and Stability Issues, Solar Energy," Vol. 67, pp. 265-286. https://doi.org/10.1016/S0038-092X(00)00076-1
  11. Oosthuizen, P. H. and Naylor, D., 1999, Introduction to convective heat transfer analysis, MaGraw-Hill, Singapore, pp. 157-220.
  12. Shah, R. K. and Sekulić, D. P., 2003, Fundamentals of heat exchanger design, John Wiley & Sons, New Jersey, pp. 102 - 419.
  13. Incropera, F. P. and Dewitt, D. P., 2002, Fundamentals of heat and mass transfer, Willy, pp. 240-369.
  14. Coppari, L. A., 1977, "Temperature Decay in a Composite Geometry Reactor Vessel Subjected to Thermal Shock: Tow - dimensional solution, Nuclear Engineering and Design,"Vol. 44, pp. 211-225. https://doi.org/10.1016/0029-5493(77)90028-0

Cited by

  1. Effectiveness of a multi-channel volumetric air receiver for a solar power tower vol.49, pp.8, 2013, https://doi.org/10.1007/s00231-013-1164-5