• Title/Summary/Keyword: Geological group

Search Result 217, Processing Time 0.027 seconds

Geological Structures of the Yeongchun Area, Danyang Coalfield, Korea (단양탄전, 영춘지역의 지질구조)

  • Kim, Jeong Hwan;Lee, Je Yong;Nam, Kil Hyun
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 1992
  • The Yeongchun area is located at the central part of the Danyang Coalfield, where Precambrian granitoids, Cambro-Ordovician Choseon Supergroup, Carboniferous-early Triassic Pyeongan Supergroup, middle Triassic-Jurassic Bansong Group and extrusive tuffs are exposed. The rocks in the area underwent four phases of deformation, which are (a) $D_1$ : Movement of the Okdong Fault, (b) $D_2$ : Formation of NW-SE trending folds and stretching lineations, (c) $D_3$: Movement of the Gagdong Thrust Fault and associated structures of NNE-SSW trending folds, and (d) $D_4$ : E-W trending strike-slip faults and folds. During the $D_3$-event, flexural slip deformation intensively affected rocks in the area. Strain measurements show relatively low strain intensity in the area. The types of strain ellipsoid are prolate in the hangingwall area and those near to the footwall area range from plane strain to weak oblate. The oblate type is developed in the region far from the footwall area.

  • PDF

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography (표면파 토모그래피를 이용한 사우디아라비아의 S파 속도구조 및 이방성 연구)

  • Kim, Rinhui;Chang, Sung-Joon;Mai, Martin;Zahran, Hani
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.

Detrital zircon U-Pb ages of the Cretaceous Iljik, Jeomgok, and Sagok formations in the Cheongsong Global Geopark, Korea: Depositional age and Provenance (청송 세계지질공원 내 백악기 일직층, 점곡층, 사곡층의 쇄설성 저어콘 U-Pb 연령: 퇴적시기와 기원지)

  • Chae, Yong-Un;Choi, Taejin;Paik, In Sung;Kim, Jong-Sun;Kim, Hyun Joo;Jeong, Hoon Young;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.11-38
    • /
    • 2021
  • Detrital zircon U-Pb dating of samples from the Baekseoktan (Iljik Formation), Mananjaam (Jeomgok Formation), and Sinseongri (Sagok Formation) geosites in the Cheongsong Global Geopark were carried out to estimate the depositional age and provenance of the Hayang Group in the Gyeongsang Basin. In the Iljik Formation, Jurassic and Triassic zircons are dominant with minor Precambrian zircons, with no Cretaceous zircon. In contrast, the Jeomgok and Sagok formations show very similar age distributions, which have major age populations of Cretaceous, Jurassic, and Paleoproterozoic ages. The weighted mean ages of the youngest zircon age groups of the Jeomgok and Sagok formations are 103.2±0.3 and 104.2±0.5 Ma, respectively. Results suggest that the depositional ages of the Jeomgok and Sagok Formations are Albian. The detrital zircon age spectra indicate a significant change in provenance between the Iljik and Jeomgok formations. The sediments of the Iljik Formation are thought to have been supplied from nearby plutonic rocks. However, the Jeomgok and Sagok sediments are interpreted to have been derived from relatively young deposits of the Jurassic accretionary complex located in southwest Japan.

Korea Stress Map 2020 using Hydraulic Fracturing and Overcoring Data (수압파쇄와 오버코어링 자료를 활용한 한국응력지도 2020)

  • Kim, Hanna;Synn, Joong-Ho;Park, Chan;Song, Won Kyong;Park, Eui Seob;Jung, Yong-Bok;Cheon, Dae-Sung;Bae, Seongho;Choi, Sung-Oong;Chang, Chandong;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.145-166
    • /
    • 2021
  • Korea Stress Map database is built by integrating actual data of 1,400 in-situ stress measurements using hydraulic fracturing and overcoring method in South Korea. Korea Stress Map 2020 is presented based on the guideline proposed by World Stress Map Project. As detailed data, stress ratio and maximum horizontal stress direction distribution for each region are also presented. The dominant maximum horizontal stress direction in the Korean Peninsula is from northeast to southeast, and the magnitude of the in-situ stress is relatively distributed. There is some stress heterogeneity caused by local characteristics such as topographical and geological properties. We investigated case studies in which the in-situ stress was affected by mountainous topography, difference in rock quality of fracture zone, presence of mine or underground cavities, and geological structure of fault zone.

CHANGE DETECTION OF LAND COVER ENVIRONMENT IN THE HAMPYEONG-BAY, KOREA USING LANDSAT DATA

  • Lee Hong-Jin;Chi Kwang-Hoon;Jang Se-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.402-402
    • /
    • 2005
  • The purpose of this study is to analyze the land cover environment changes of tidal flat in the Hampyeong Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data (Path-Row: 116-034) were used in this study. Remote sensing data can be effectively applied for quantitative analysis of geological environment changes in the Hampyeong-bay.

  • PDF

A Study on the Failure Characteristics for the Rock Slopes (Centering Around Jungang Highway) (암반사면의 붕괴특성에 관한 연구(중앙고속도로를 중심으로))

  • Kim, Jong-Ryeol;Lee, Jin-Su;Hwang, Pung-Ju;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.765-776
    • /
    • 2005
  • As a result of industrial advancement and land development, a number of highway slopes have been gradually formed and numerous problems related to their stability have been frequently caused. Generally, major factors for rock slope stability are lithology, slope inclination, slope height, degree of weathering, precipitation, condition of groundwater and so onl. Many complex factors are mostly involved in the collapse of rock slopes. In this study, a database for 94 collapsed Jungang highway slopes were set up using GIS program through literature search, site investigation, geological map and Korea tectonic province map. The analyses for the collapsed factor including sort of rock(by origin), tectonic province, highway direction, slope gradient and direction, degree of weathering, slope height were carried.

  • PDF

Stratigraphy and Petrology of the Volcanic mass in the Chilpo-Weolpo Area, the north of Pohang basin, Korea (포항분지(浦項盆地) 북부(北部)(칠포(七浦)-월포(月浦)일원)에 분포(分布)하는 화산암류(火山岩類)에 대한 암석학적(岩石學的)·층서적(層序的) 연구(硏究))

  • Yun, Sung Hyo
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 1988
  • The purpose of this study is to determine the stratigraphy of the volcanic rocks in the Chilpo-Weolpo area, the north of Pohang basin, based on field survey and lithological properties of the rocks. The volcanic pile(Chilpo tuff) overlies the Cretaceous sedimentary formation and is unconformably overlain by the Miocene Yeonil Group. The Chilpo tuff comprises a thick sequence(>200m) of pyroclastic flow deposits. Five members are distinguished, each representing separate flow units, comprising none(or weakly) to densely welded rhyolite tuff. The Chilpo tuff consists of, in ascending order, greenish weakly welded tuff, volcanic conglomerate, alternation of tuff breccias and fine tuffs, greenish none to densely welded tuff and red-brownish densely to weakly welded vitric tuff. This study revealed that the volcanic rocks in this area were formed by 4 volcanic stages. On the basis of K-Ar age($44.7{\pm}1.1\;Ma$) and lithologic data, geological age of the Chilpo tuff may be Eocene.

  • PDF

A review of chromatographic analysis for rare-earth elements with focus on Ln resin

  • Jihye Kim;Kihwan Choi
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.259-266
    • /
    • 2023
  • The demand for rare-earth elements (REEs) is increasing owing to their significance as prominent materials in electronics, high-tech industries, geological research, nuclear forensics, and environmental monitoring. In general, the utilization of REEs in various applications requires the use of chromatographic techniques to separate individual elements. However, REEs have similar physicochemical properties, which makes them difficult to separate. Recently, several studies have examined the separation of REEs using LN resin as the stationary phase and aqueous nitric acid and hydrochloric acid solutions as eluents. Using this method, light REEs have been separated using dilute acid solutions as the eluent, whereas heavy REEs are separated using solutions with high acid concentrations. To increase the separation resolution between different REEs, either the column length or resin size is changed. In addition, the suggested methods are implemented to decrease the analysis time. This review presents technical information on the chromatographic separation of REEs using the LN resin and discusses the optimal experimental conditions.

Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea (한반도 동부 울진 죽변-부구 지역 암맥군과 단열계의 상대연령과 지구조적 의미)

  • Kim, Chang-Min;Kim, Jong-Sun;Song, Cheol-Woo;Son, Moon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.173-189
    • /
    • 2011
  • Basic to acidic dykes and systematic joints are observed pervasively in the Jukbyeon-Bugu area, Uljin, east Korea. In order to classify the dykes and joints and to determine the relative chronology, their geometries, kinematics, and cross-cutting relationships, and the petrography and geochemistry of dykes are synthetically analyzed. Based on the orientations and cross-cutting relationships of 144 dykes (137 basic and 7 acidic dykes) and 370 systematic joints, three basic dike swarms (M-10, M-80, and M-100), one acidic dyke group (AD), and four joint sets (J-10, J-40, J-80, and J-150) are classified. Some of the J-150 joints reactivated as dextral strike-slip fault are recognized in the field and named as F-340R. According to petrographic, geochemical, and occurrence features in the field, M-80 and M-100 dykes have originated from a co-magma and intruded under the same stress field, even though they have intruded through different passages, preexisting fractures and new fractures created by magmatic pressure, respectively. And the relative chronology of dyke swarms and joint sets in the study area is determined as follows : ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ . And the M-80 (M-100) and M-10 dyke swarms intruded under NNE-SSW and NW-SE trending horizontal minimum stress fields, respectively. According to a synthesis of the results of the previous and this studies, the M-80, M-10, and F-340R are interpreted to have been formed about 64-52 Ma, Eocene~Oligocene, and Miocene, respectively.

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.