Browse > Article
http://dx.doi.org/10.7474/TUS.2021.31.3.145

Korea Stress Map 2020 using Hydraulic Fracturing and Overcoring Data  

Kim, Hanna (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Synn, Joong-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Park, Chan (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Song, Won Kyong (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Park, Eui Seob (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Jung, Yong-Bok (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Cheon, Dae-Sung (Geology Division, Korea Institute of Geoscience and Mineral Resources)
Bae, Seongho (GeoGeny Consultants Group Inc.)
Choi, Sung-Oong (Department of Energy and Resources Engineering, Gangwon National University)
Chang, Chandong (Department of Geological Sciences, Chungnam National University)
Min, Ki-Bok (Department of Energy Systems Engineering, Seoul National University)
Publication Information
Tunnel and Underground Space / v.31, no.3, 2021 , pp. 145-166 More about this Journal
Abstract
Korea Stress Map database is built by integrating actual data of 1,400 in-situ stress measurements using hydraulic fracturing and overcoring method in South Korea. Korea Stress Map 2020 is presented based on the guideline proposed by World Stress Map Project. As detailed data, stress ratio and maximum horizontal stress direction distribution for each region are also presented. The dominant maximum horizontal stress direction in the Korean Peninsula is from northeast to southeast, and the magnitude of the in-situ stress is relatively distributed. There is some stress heterogeneity caused by local characteristics such as topographical and geological properties. We investigated case studies in which the in-situ stress was affected by mountainous topography, difference in rock quality of fracture zone, presence of mine or underground cavities, and geological structure of fault zone.
Keywords
Korea Stress Map; World Stress Map; In-situ stress; Hydraulic fracturing; Overcoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 한국지질자원연구원, 2012, 중앙선 도담-영천 복선전철 제 2공구 노반건설공사 수압파쇄 초기지압 측정, 53p.
2 Reiter, K., Heidbach, O., Schmitt, D., Haug, K., Ziegler, M., and Moeck, I, 2014, A revised crustal stress orientation database for Canada. Tectonophysics, 636, pp.111-124.   DOI
3 Cornet, F. H, 2015, Elements of crustal geomechanics. Cambridge University Press.
4 Cui, X., Y. Wang, M. Zhu, X. Hu and F. Xie, 2013, The variations of stress parameters with depth in upper crust in Chinese continent, Proc. 6th Int. Symp. on In-Situ Rock Stress, 20-22 August 2013, Sendai, Japan, pp.974-979.
5 Haghi, A.H., R. Chalaturnyk and H. Ghobadi, 2018, The state of stress in SW Iran and implications for hydraulic fracturing of a naturally fractured carbonate reservoir, Int. J. Rock Mech. Min. Sci., 105, pp.28-43.   DOI
6 Haimson, B.C., 1978, The hydrofracturing stress measuring method and recent field results, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 15, pp.167-178.   DOI
7 Haimson, B.C. and F.H. Cornet, 2003, ISRM suggested methods for rock stress estimation-Part 3: hydraulic fracturing(HF) and/or hydraulic testing of pre-existing fractures(HTPF), Int. J. Rock Mech. & Min. Sci., 40, pp.1011-1020.   DOI
8 Heidbach, O., A. Barth, B. Muller, J. Reinecker, O. Stephansson, M. Tingay and A. Zang, 2016, World Stress Map Technical Report 16-01, GFZ German Research Centre for Geosciences, 52p.
9 Herget, G., 1987, Stress assumptions for underground excavations in the Canadian Shield, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24(1), pp.95-97.   DOI
10 Kang, H., X. Zhang, L. Si, Y. Wu and F. Gao, 2010, In-situ stress measurement and stress distribution characteristics in underground coal mines in China, Engineering Geology, 116, 333-345.   DOI
11 Pan, E., B. Amadei and W.Z. Savage, 1995, Gravitational and tectonic stresses in anisotropic rock with irregular topography, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 32(3), pp.201-214.   DOI
12 Sjoberg, J., Christiansson, R., and Hudson, J. A. (2003). ISRM Suggested Methods for rock stress estimation: Part 2: overcoring methods. International journal of rock mechanics and mining sciences, 40(7-8), pp. 999-1010.   DOI
13 한국지질자원연구원, 1999b, U-1 추가비축기지 조사설계용역 수압파쇄 시험 결과 보고서, 119p.
14 한국지질자원연구원, 2000, 전주-함양간 고속도로 제 10공구 건설공사 지반조사 (수압파쇄시험), 89p.
15 한국지질자원연구원, 2008, 고속국도 제 60호선 동홍천-양양간 건설공사(14공구) 대안설계 수압파쇄 초기지압 측정, 78p.
16 한국지질자원연구원, 2014, 심부 금속광체 정밀 물리탐사 및 채광기술 개발(Development of mining and geophysical exploration techniques for the deep-seated metallic ore deposit), GP2012-006-2014(3), 176p.
17 Synn, J.H., C. Park and B.J. Lee, 2013, Regional distribution pattern and geo-historical transition of in-situ stress fields in the Korean peninsula, J. Korean Society for Rock Mechanics; Tunnel and Underground Space, 23(6), pp.457-469.   DOI
18 한국지질자원연구원, 2009, 지하 암반내 복공식 에너지저장시스템 개발 (Development of underground energy storage system in lined rock cavern), GP2009-019-2009(1), 273p.
19 한국지질자원연구원, 2011, 지하 암반내 복공식 에너지저장시스템 개발(Development of underground energy storage system in lined rock cavern), GP2009-019-2011(3), 387p.
20 Amadei, B. and Stephansson, O., 1997, Rock stress and its measurement. Springer Science & Business Media.
21 Brown, E.T. and E. Hoek, 1978, Trends in relationships between measured in-situ stresses and depth, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, pp.211-215.   DOI
22 Warpinski, N.R. and L.W. Teufel, 1991, In situ stress measurements at Rainier Mesa, Nevada Test Site-Influence of topography and lithology on the stress state in tuff, Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 28, pp.143-161.   DOI
23 Zang, A. and Stephansson, O, 2009, Stress field of the Earth's crust. Springer Science & Business Media.
24 Zang, A., O. Stephansson, O. Heidbach and S. Janouschkowetz, 2012, World Stress Map database as a resource for rock mechanics and rock engineering, Geotech. Geol. Eng. 30, pp.625-646.   DOI
25 Zoback, M.D, 2010, Reservoir geomechanics. Cambridge University Press.
26 한국지질자원연구원, 1999a, 서울-부산간 경부고속철도 제 12공구 노반실시설계, 52p.
27 Heidbach, O., M. Rajabi, K. Reiter and M. Ziegler, 2016, World Stress Map 2016, GFZ Data Service, doi:10.5880/WSM.2016.002.
28 Amadei, B., 1996, Importance of anisotropy when estimating and measuring in-situ stresses in rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 33(3), pp.293-325.   DOI
29 한국지질자원연구원, 2010, 지하 암반내 복공식 에너지저장시스템 개발 (Development of underground energy storage system in lined rock cavern), GP2009-019-2010(2), 232p.
30 한국지질자원연구원, 2013, 심부 금속광체 정밀 물리탐사 및 채광기술 개발(Development of mining and geophysical exploration techniques for the deep-seated metallic ore deposit), GP2012-006-2013(2), 237p.
31 한국지질자원연구원, 2003, 여수 U1 추가비축기지 초기응력 측정 연구, 44p.