Browse > Article
http://dx.doi.org/10.7582/GGE.2019.22.1.021

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography  

Kim, Rinhui (Division of Geology and Geophysics, Kangwon National University)
Chang, Sung-Joon (Division of Geology and Geophysics, Kangwon National University)
Mai, Martin (King Abdullah University of Science and Technology (KAUST))
Zahran, Hani (Saudi Geological Survey (SGS))
Publication Information
Geophysics and Geophysical Exploration / v.22, no.1, 2019 , pp. 21-28 More about this Journal
Abstract
We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.
Keywords
surface wave; dispersion curve; Arabia; tomography; anisotropy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav, S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab, B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., and Kogan, L., 2010, Geodetic constraints on present-day motion of the Arabian plate: Implications for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011, doi:10.1029/2009TC002482.   DOI
2 Bath, M., 1974, Spectral Analysis in Geophysics, Elsevier, 580.
3 Baumgardner, J. R., and Frederickson, P. O., 1985, Icosahedral Discretization of the Two-Sphere, SIAM J. Numer. Anal., 22(6), 1107-1115.   DOI
4 Bosworth, W., Huchon, P., and McClay, K., 2005, The Red Sea and Gulf of Aden Basins, J. Afr. Earth Sci., 43, 334-378.   DOI
5 Brigham, E. O., 1988, The fast Fourier Transform and its applications, Prentice Hall, 448.
6 Brown, G. F., 1972, Tectonic Map of the Arabian Peninsula, US Geological Survey.
7 Camp, V. E., and Roobol, M. J., 1992, Upwelling asthenosphere beneath western Arabia and its regional implications, J. Geophys. Res., 97, 15255-15271.   DOI
8 Chang, S. J., Merino, M., Van der Lee, S., Stein, S., and Stein, C. A., 2011, Mantle flow beneath Arabia offset from the opening Red Sea, Geophys. Res. Lett., 38(4), L04301, doi:10.1029/2010GL045852.   DOI
9 Chang, S. J., and Van der Lee, S., 2011, Mantle plumes and associated flow beneath Arabia and East Africa, Earth Planet. Sci. Lett., 302, 448-454.   DOI
10 Coleman, R. G., 1977, Ophiolites: Ancient Oceanic Lithosphere? Springer-Verlag, 229.
11 Dziewonski, A., Bloch, S., and Landisman, M., 1969, Technique for the analysis of transient seismic signals, Bull. Seis. Soc. Am., 59(1), 427-444.   DOI
12 Falcon N., 1974. Southern Iran: Zagros Mountains. In: Spencer, A., Ed., Mesozoic-Cenozoic Orogenic Belts, 4, Geol. Soc. Spec. Publ. 199-211.   DOI
13 Garfunkel, Z., and Beyth, M., 2006, Constraints on the structural development of Afar imposed by kinematics of the major surrounding plates, Geol. Soc. Spec. Publ., 259, 23-42.   DOI
14 Herrmann, R. B., and Ammon, C. J., 2002, Computer Programs in Seismology, Version 3.30, Saint Louis University, St. Lousis, Missouri.
15 Sepehr, M., and Cosgrove, J. W., 2004, Structural framework of the Zagros fold-thrust belt, Iran, Mar. Pet. Geol., 21(7), 829-843.   DOI
16 Kennett, B. L. N., Sambridge, M. S., and Williamson, P. R., 1988, Subspace methods for large inverse problems with multiple parameter classes, Geophys. J. Int., 94(2), 237-247.   DOI
17 Koulakov, I., Burov, E., Cloetingh, S., El Khrepy, S., Al-Arifi, N., and Bushenkova, N., 2016, Evidence for anomalous mantle upwelling beneath the Arabian Platform from travel time tomography inversion, Tectonophysics, 667, 176-188.   DOI
18 McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., and Tealeb, A., 2003, GPS constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int., 155, 126-138.   DOI
19 Stocklin, J., 1968, Structural history and tectonics of Iran: a review, Am. Assoc. Pet. Geol. Bull., 52(7), 1229-1258.
20 Stoeser, D. B., and Camp, V. E., 1985, Pan-African Microplate Accretion of the Arabian Shield, Geol. Soc. Am. Bull., 96(7), 817-826.   DOI
21 Tang, Z., Julia, J., Zahran, H., and Mai, P. M., 2016, The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield, Tectonophysics, 680, 8-27.   DOI
22 Tang, Z., Mai, P. M., Chang, S. J., and Zahran, H., 2018, Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography, Earth Planet. Sci. Lett., 495, 24-37.   DOI