• Title/Summary/Keyword: Geo-Spatial Information

Search Result 548, Processing Time 0.029 seconds

Development of Java/VRML-based 3D GIS's Framework and Its Prototype Model (Java/VRML기반 3차원 GIS의 기본 구조와 프로토타입 모델 개발)

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.11-17
    • /
    • 1998
  • Recently, 3D GIS based on 3D geo-processing methodology and Internet environment are emerging issues in GIS fields. To design and implement 3D GIS, the strategic linkage of Java and VRML is first regarded: 3D feature format definition in the passion of conventional GIS including aspatial attributes, 3B feature indexing, 3D analytical operators such as selection, buffering, and Near, Metric operation such as distance measurement and statistical description, and 3D visualization. In 3D feature format definition, the following aspects are implemented: spatial information for 3D primitives extended from 2D primitives, multimedia data, object texture or color of VRML specification. DXF-format GIS layers with additional attributes are converted to 3D feature format and imported into this system. While, 3D analytical operators are realized in the form of 3D buffering with respect to user-defined point, line, polygon, and 3D objects, and 3D Near functions; furthermore, 'Lantern operator' is newly introduced in this 3D GIS. Because this system is implemented by Java applet, any client with Java-enable browser including VRML browser plug-in can utilize the new style of 3D GIS function in the virtual space. Conclusively, we present prototype of WWW-based 3D GIS, and this approach will be contribute to development of core modules on the stage of concept establishment and of real application model in future.

  • PDF

Technology Trends and Future Prospects of Satellite-Based Photovoltaic Electricity Potential (위성기반 태양광 발전가능량 산출기술 개발 동향 및 향후 전망)

  • Han, Kyung-Soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.579-587
    • /
    • 2016
  • To obtain a stable energy supply and manage PhotoVoltaic (PV) systems efficiently, satellite imagery methods are being developed to estimate the solar PV potential. This study analyzed trends in the use of satellite imagery in solar PV and solar irradiation estimation technology. The imaging technology is used to produce solar energy resource maps. The trend analysis showed that the level of solar PV technology in Korea is 30% below that of advanced countries. It is impossible to raise such low-level technologies to the levels of advanced countries quickly. Intensive research and development is the only way to achieve the 80% technology level of advanced countries. The information produced in this process can contribute to the management of solar power plants. A valid technology development strategy would be to obtain effective data that can be used for fieldwork. Such data can be produced by estimating solar irradiation very accurately with several-hundred-meter resolution using Communication, Ocean, and Meteorological Satellites (COMS) and next-generation GEO-KOMPSAT 2A, developing core technologies for short- and medium-term irradiation prediction, and developing technologies for estimating the solar PV potential.

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data (KOMPSAT-2 영상과 항공 LiDAR 자료를 이용한 3차원 해안선 매핑)

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces.

A Study on the Deveslopment and Utilization of GEospatial Platform Service for the Research and Education (연구교육용 공간정보기술 통합플랫폼 개발 및 활용방안)

  • Han, Seon Hee;Kim, Seung Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4549-4558
    • /
    • 2015
  • Recently as the interesting in geospatial technology increases, various research and education in that regard is proceeding actively. This study developed 'GEospatial Education Platform Service' for development and extension of domestic geospatial technology. GEEPS's objective are efficient utilization and environment composition about geospatial technology in educational institution and research institute. GEEPS has developed to integrate with benefits of open source software and developed Korea Land Spatialization R&D Program. In addition, we surveyed and analysed GEEPS's monitoring to seek for utilization and development planning of GEEPS and we came up with activation and advancement planning.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Utilization of Database in 3D Visualization of Remotely Sensed Data (원격탐사 영상의 3D 시각화와 데이터베이스의 활용)

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • 3D visualization of geological environments using remotely sensed data and the various sources of data provides new methodology to interpret geological observation data and analyze geo-information in earth science applications. It enables to understand spatio-temporal relationships and causal processes in the three-dimension, which would be difficult to identify without 3D representation. To build more realistic geological environments, which are useful to recognize spatial characteristics and relationships of geological objects, 3D modeling, topological analysis, and database should be coupled and taken into consideration for an integrated configuration of the system. In this study, a method for 3D visualization, extraction of geological data, storage and data management using remotely sensed data is proposed with the goal of providing a methodology to utilize dynamic spatio-temporal modeling and simulation in the three-dimension for geoscience and earth science applications.

A Study on Algorithm for Computerization of Cadastral Maps (지적도면 전산화를 위한 알고리즘에 관한 연구)

  • 김충평;김감래
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.111-118
    • /
    • 1998
  • Today Geo-Spatial Information System(GSIS) has developed and used more widely, and especially it has been more greatly asked for Land Information System as a part of GSIS. Now it has been planning and monitoring for remaking of cadastral maps by the Ministry of Government Administration and Home Affairs. But this is long term project because of the importance of itself. And then it has been needed to computerize cadastral maps for implementation of relative tasks and services. Cadastral maps have some problems; for example, map join in different scales, different administration boundary and so on. In this study General topology algorithm, Polygonization algorithm and Pseudo-topology algorithm was adapted in computerization of cadastral maps. This is called digital map. The area and shape of parcels do not change. As a result it was found that Polygonization algorithm is the best of 3 algorithm and General topology algorithm is the worst.

  • PDF

3D Building Reconstruction and Visualization by Clustering Airborne LiDAR Data and Roof Shape Analysis

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.507-516
    • /
    • 2007
  • Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.

Correction of Geometric Distortion of Internet Aerial Imagery and Photo-Realistic 3D Building Modeling (인터넷 항공영상의 왜곡보정과 실감적 3차원 건물 모델링)

  • Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.687-695
    • /
    • 2011
  • Many internet portals provide maps with spatial information services. Recently, various images including aerial, satellite, street view, and photo-realistic 3D city models are provided as well as maps. This study suggested a method for geometric correction of the panoramic aerial images in the internet portal and 3D building modeling using information which is available in the internet. The key of this study is to obtain all necessary data easily from internet without restrictions. Practically, the ground control coordinates could be available from geo-referenced internet maps, and stereo pairs of the aerial images and close-range photographs for photo-realistic object modeling are provided by the internet service. However, the ground control points are not suitable for accurate mapping. RMSE of the plotting was about 9 meters and reduced upto 4 meters after coordinate transformation. The proposed methods would be applicable to various applications of photo-realistic object modeling which do not require high accuracy.

SLM using GIS data formats for 3D virtual model of research (SLM 포맷을 이용한 GIS 데이터의 3D 가상모델에 대한 연구)

  • Han, Jeong-Ah;Seo, Laiwon
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.113-120
    • /
    • 2014
  • In recent years, devices using the smart ponwa IT service is activated, to research how the fusion of two or more devices will be able to be interest in the soybeans. One of them in the mobile sector through the development of network and hardware digital geo-spatial map of the rapid advances being made and the computer, how do you map data to efficiently simulate a 3D environment, providing services through a virtual environment focused on whether be. In this study, augmented reality and GIS (Geographic Information System), SLM (Static LOD Model) that combines augmented reality technology on the basis of the basic concepts and approaches in geographic space and how Augmented Reality Based on this interpretation of the relevant content What to do in the development and utilization has a purpose. In this study, the conventional SLM 3DS model data structure of a data format conversion of the proposed possibilities for analyzing and, SLM model generation and format of the existing three-dimensional visualization tools SLM model format for converting a format to a model function, and visualization features. In addition, 3D virtual model to propose a format for efficiently making.