• Title/Summary/Keyword: Genomic Selection

Search Result 223, Processing Time 0.023 seconds

Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng

  • Hong, Jeongeui;Kim, Hogyum;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • Korean ginseng (Panax ginseng) has long been cultivated as an important economic medicinal plant. Owing to the seasonal and long-term agricultural cultivation methods of Korean ginseng, they are always vulnerable to various environmental stress conditions. ABSCISIC ACID (ABA) is an essential plant hormone associated with seed development and diverse abiotic stress responses including drought, cold and salinity stress. By modulating ABA responses, plants can regulate their immune responses and growth patterns to increase their ability to tolerate stress. With recent advances in genome sequencing technology, we first reported the functional features of genes related to canonical ABA signaling pathway in P. ginseng genome. Based on the protein sequences and functional genomic analysis of Arabidopsis thaliana, the ABA related genes were successfully identified. Our functional genomic characterizations clearly showed that the ABA signaling related genes consisting the ABA receptor proteins (PgPYLs), kinase family (PgSnRKs) and transcription factors (PgABFs, PgABI3s and PgABI5s) were evolutionary conserved in the P. ginseng genome. We confirmed that overexpressing ABA related genes of P. ginseng completely restored the ABA responses and stress tolerance in ABA defective Arabidopsis mutants. Finally, tissue and age specific spatio-temporal expression patterns of the identified ABA-related genes in P. ginseng tissues were also classified using various available RNA sequencing data. This study provides ABA signal transduction related genes and their functional genomic information related to the growth and development of Korean ginseng. Additionally, the results of this study could be useful in the breeding or artificial selection of ginseng which is resistant to various stresses.

Comparison on genomic prediction using pedigree BLUP and single step GBLUP through the Hanwoo full-sib family

  • Eun-Ho Kim;Ho-Chan Kang;Cheol-Hyun Myung;Ji-Yeong Kim;Du-Won Sun;Doo-Ho Lee;Seung-Hwan Lee;Hyun-Tae Lim
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1327-1335
    • /
    • 2023
  • Objective: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. Methods: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.

Genomic analysis reveals selection signatures of the Wannan Black pig during domestication and breeding

  • Zhang, Wei;Yang, Min;Wang, Yuanlang;Wu, Xudong;Zhang, Xiaodong;Ding, Yueyun;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.712-721
    • /
    • 2020
  • Objective: The Wannan Black pig is a typical Chinese indigenous, disease-resistant pig breed with high fertility, and a crude-feed tolerance that has been bred by artificial selection in the south of Anhui province for a long time. However, genome variation, genetic relationships with other pig breeds, and domestication, remain poorly understood. Here, we focus on elucidating the genetic characteristics of the Wannan Black pig and identifying selection signatures during domestication and breeding. Methods: We identified the whole-genome variation in the Wannan Black pig and performed population admixture analyses to determine genetic relationships with other domesticated pig breeds and wild boars. Then, we identified the selection signatures between the Wannan Black pig and Asian wild boars in 100-kb windows sliding in 10 kb steps by using two approaches: the fixation index (FST) and π ratios. Results: Resequencing the Wannan Black pig genome yielded 501.52 G of raw data. After calling single-nucleotide variants (SNVs) and insertions/deletions (InDels), we identified 21,316,754 SNVs and 5,067,206 InDels (2,898,582 inserts and 2,168,624 deletions). Additionally, we found genes associated with growth, immunity, and digestive functions. Conclusion: Our findings help in explaining the unique genetic and phenotypic characteristics of Wannan Black pigs, which in turn can be informative for future breeding programs of Wannan Black pigs.

Genetic Analysis Strategies for Improving Race Performance of Thoroughbred Racehorse and Jeju Horse (서러브레드 경주마와 제주마의 경주 능력 향상을 위한 유전체 분석 전략)

  • Baek, Kyung-Wan;Gim, Jeong-An;Park, Jung-Jun
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.130-139
    • /
    • 2018
  • In ancient times, horse racing was done in ancient European countries in the form of wagon races or mountain races, and wagon racing was adopted as a regular event at the Greek Olympic Games. Thoroughbred horse has been bred since 17th century by intensive selective breeding for its speed, stamina, and racing ability. Then, in the 18th century, horse racing using the Thoroughbred species began to gain popularity among nobles. Since then, horse racing has developed into various forms in various countries and have developed into flat racing, steeplechasing, and harness racing. Thoroughbred racehorse has excellent racing abilities because of powerful selection breeding strategy for 300 years. It is necessary to maintain and maximize horses' ability to race, because horse industries produce enormous economic benefits through breeding, training, and horse racing. Next-generation sequencing (NGS) methods which process large amounts of genomic data have been developed recently. Based on the remarkable development of these genomic analytical techniques, it is now possible to easily carry out animal breeding strategies with superior traits. In order to select breeding racehorse with superior racing traits, the latest genomic analysis techniques have to be introduced. In this paper, we will review the current efforts to improve race performance for racehorses and to examine the research trends of genomic analysis. Finally, we suggest to utilize genomic analysis in Thoroughbred racehorse and Jeju horse, and propose a strategy for selective breeding for Jeju horse, which contributes job creation of Korea.

Comparison of Genome-wide Association Study (GWAS) Algorithms for Detecting Genetic Variants Associated with Growth Traits in Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus)의 성장형질 연관 유전자 변이 탐색을 위한 전장유전체연관분석(GWAS) 알고리즘 비교 분석 연구)

  • Sangwon Yoon;Heegun Lee;Jong-Won Park;Minhwan Jeong;Dain Lee;Hyo Sun Jung;Julan Kim;Hye-Rim Yang;Seung Hwan Lee;Jeong-Ho Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.411-418
    • /
    • 2023
  • Genome wide association studies (GWAS) identify genetic loci associated with quantitative traits in genomic selection. Although several studies have compared performance of various algorithms, no study compares them in olive flounder Paralichthys olivaceus. This study compared the GWAS results of four mixed linear model (MLM) algorithms and one Fixed and random model Circulating Probability Unification (FarmCPU) algorithm in olive flounder. Considering gender and genetic association matrices as fixed and random effects, the MLM had stable performance without inflation for λGC (genomic inflation factor) of -log10P. The FarmCPU algorithm had some appropriate λGC of -log10P, and an upward tail was identified in quantile-quantile plots. Therefore, the models were suitable for detecting genetic variants associated with olive flounder growth traits. Moreover, significant genotypes appeared several times at chromosome 22, around which quantitative trait loci are expected to exist. Finally, in both models, some of the most genetic variants were found in genes related to growth traits, confirming their reliability. These results will be helpful when applied to the genomic selection of olive flounder growth traits in the future.

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh;Maghdoori, Hossein;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

(Co)heritability of acetone and β-hydroxybutyrate concentrations in raw milk related to ketosis in Holsteins (홀스타인 젖소의 케톤증과 관련된 원유속 아세톤과 β-히드록시부틸산 함량에 대한 (공)유전력)

  • Cho, Kwang-Hyun;Cho, Chung-Il;Lee, Joon-Ho;Park, Kyung-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.915-921
    • /
    • 2015
  • This experiment was conducted to estimate the heritability and coheritablity of daily milk yield, acetone and ${\beta}$-hydroxybutyrate (BHBA) concentrations in raw milk. The average concentrations of acetone and BHBA were $135.54{\pm}96.29{\mu}mol$ and $61.08{\pm}66.76{\mu}mol$, respectively, and the differences between high group and low group cows were highly significant (p <0.01). The estimates of heritability of daily milk yield, acetone and BHBA concentrations were in the range of 0.18~0.21, 0.11~0.13 and 0.01~0.02, respectively. The estimate of heritability of $Log_e$acetone did not change much, while that of $Log_eBHBA$ increased to 0.03~0.04. The estimates of phenotypic and genetic correlation coefficients between acetone and BHBA were 0.44 and 0.48, respectively. In low milk yield group, the coheritability estimates of BHBA and $Log_eBHBA$ when selection was for daily milk yield were 0.26 and 0.32, respectively. These were higher than the coheritability estimate of acetone when selection was for daily milk yield. The same trend was noted in the coherihability estimates from the whole records using both high and low milk yield groups together. BHBA concentration seemed to be more effectively responding than acetone concentration when selection was for daily milk yield.

Development of transgenic cucumbers expressing Arabidopsis Nit gene (애기장대 Nit유전자 발현 오이 형질전환체 개발)

  • Jang, Hyun A;Lim, Ka Min;Kim, Hyun A;Park, Yeon-Il;Kwon, Suk Yoon;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.198-202
    • /
    • 2013
  • To produce transgenic cucumber expressing Nit gene coffering abiotic resistance, the cotyledonary-node explants of cucumber (cv. Eunsung) were inoculated with A. tumefaciens transformed with pPZP211 or pCAMBIA2300 carrying Nit gene, that has cis-acting element involved in resistance to various abiotic environmental stresses. After co-cultivation, the procedures of selection, shoot initiation, shoot elongation, and plant regeneration were followed by cotyledonary-node transformation method (CTM, Jang et al. 2011). The putative transgenic plants were selected when shoots were grown to a length greater than 3 cm from the cotyledonary-node explants on selection medium supplemented with 100 mg/L paromomycin as a selectable agent. The confirmation of transgenic cucumber was based on the genomic PCR, Southern blot analysis, RT-PCR, and Northern blot analysis. A 105 shoots (4.12%) selected from the selection mediums were obtained from 2,547 explants inoculated. Of them, putative transgenic plants were only confirmed with 45 plants (1.77%) by genomic PCR analysis. Transgenic plants showed that the Nit genes integrated into each genome of 39 plants (1.53%) by Southern blot analysis, and the expression of gene integrated into cucumber genome was only confirmed at 6 plants (0.24%) by RT-PCR and Northern blot analysis. These results lead us to speculate that the genes were successfully integrated and expressed in each genome of transgenic cucumber.

Genome-wide analyses of the Jeju, Thoroughbred, and Jeju crossbred horse populations using the high density SNP array

  • Kim, Nam Young;Seong, Ha-Seung;Kim, Dae Cheol;Park, Nam Geon;Yang, Byoung Chul;Son, Jun Kyu;Shin, Sang Min;Woo, Jae Hoon;Shin, Moon Cheol;Yoo, Ji Hyun;Choi, Jung-Woo
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1249-1258
    • /
    • 2018
  • The Jeju horse is an indigenous Korean horse breed that is currently registered with the Food and Agriculture Organization of the United Nations. However, there is severe lack of genomic studies on Jeju horse. This study was conducted to investigate genetic characteristics of horses including Jeju horse, Thoroughbred and Jeju crossbred (Jeju${\times}$Thoroughbred) populations. We compared the genomes of three horse populations using the Equine SNP70 Beadchip array. Short-range Linkage disequilibrium was the highest in Thoroughbred, whereas $r^2$ values were lowest in Jeju horse. Expected heterozygosity was the highest in Jeju crossbred (0.351), followed by the Thoroughbred (0.337) and Jeju horse (0.311). The level of inbreeding was slightly higher in Thoroughbred (-0.009) than in Jeju crossbred (-0.035) and Jeju horse (-0.038). $F_{ST}$ value was the highest between Jeju horse and Thoroughbred (0.113), whereas Jeju crossbred and Thoroughbred showed the lowest value (0.031). The genetic relationship was further assessed by principal component analysis, suggesting that Jeju crossbred is more genetically similar to Thoroughbred than Jeju horse population. Additionally, we detected potential selection signatures, for example, in loci located on LCORL/NCAPG and PROP1 genes that are known to influence body. Genome-wide analyses of the three horse populations showed that all the breeds had somewhat a low level of inbreeding within each population. In the population structure analysis, we found that Jeju crossbred was genetically closer to Thoroughbred than Jeju horse. Furthermore, we identified several signatures of selection which might be associated with traits of interest. To our current knowledge, this study is the first genomic research, analyzing genetic relationships of Jeju horse, Thoroughbred and Jeju crossbred.

Comparison of Breeding Value by Establishment of Genomic Relationship Matrix in Pure Landrace Population (유전체 관계행렬 구성에 따른 Landrace 순종돈의 육종가 비교)

  • Lee, Joon-Ho;Cho, Kwang-Hyun;Cho, Chung-Il;Park, Kyung-Do;Lee, Deuk Hwan
    • Journal of Animal Science and Technology
    • /
    • v.55 no.3
    • /
    • pp.165-171
    • /
    • 2013
  • Genomic relationship matrix (GRM) was constructed using whole genome SNP markers of swine and genomic breeding value was estimated by substitution of the numerator relationship matrix (NRM) based on pedigree information to GRM. Genotypes of 40,706 SNP markers from 448 pure Landrace pigs were used in this study and five kinds of GRM construction methods, G05, GMF, GOF, $GOF^*$ and GN, were compared with each other and with NRM. Coefficients of GOF considering each of observed allele frequencies showed the lowest deviation with coefficients of NRM and as coefficients of GMF considering the average minor allele frequency showed huge deviation from coefficients of NRM, movement of mean was expected by methods of allele frequency consideration. All GRM construction methods, except for $GOF^*$, showed normally distributed Mendelian sampling. As the result of breeding value (BV) estimation for days to 90 kg (D90KG) and average back-fat thickness (ABF) using NRM and GRM, correlation between BV of NRM and GRM was the highest by GOF and as genetic variance was overestimated by $GOF^*$, it was confirmed that scale of GRM is closely related with estimation of genetic variance. With the same amount of phenotype information, accuracy of BV based on genomic information was higher than BV based on pedigree information and these symptoms were more obvious for ABF then D90KG. Genetic evaluation of animal using relationship matrix by genomic information could be useful when there is lack of phenotype or relationship and prediction of BV for young animals without phenotype.